


Internet of Things Security and Privacy
The Internet of Things (IoT) concept has emerged partly due to information and
communication technology developments and societal needs, expanding the abil-
ity to connect numerous objects. The wide range of facilities enabled by IoT has
generated a vast amount of data, making cybersecurity an imperative requirement
for personal safety and for ensuring the sustainability of the IoT ecosystem. This
book covers security and privacy research in the IoT domain, compiling technical
and management approaches, addressing real-world problems, and providing prac-
tical advice to the industry. This book also includes a collection of research works
covering key emerging trends in IoT security and privacy that span the entire IoT
architecture layers, focusing on different critical IoT applications such as advanced
metering infrastructure and smart grids, smart locks, and cyber-physical systems.

The provided state-of-the-art body of knowledge is essential for researchers, prac-
titioners, postgraduate students, and developers interested in the security and privacy
of the IoT paradigm, IoT-based systems, and any related research discipline. This
book is a valuable companion and comprehensive reference for postgraduate and se-
nior undergraduate students taking an advanced IoT security and privacy course.
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Preface
The Internet of Things (IoT) is a nascent paradigm that has emerged due to signifi-
cant advancements in information and communication technology (ICT). Its primary
goal is to enhance the functionality of the original version of the Internet by facili-
tating connections between an array of objects. The IoT model has since evolved to
encompass various applications, including Industry 4.0 and manufacturing systems,
cyber-physical systems, eHealth, smart cities and smart homes, robotics and drones,
transportation, and critical infrastructures. Despite the many advantages of IoT and
other sensing technologies, they generate a massive volume of data across various
domains, necessitating security and privacy measures to safeguard personal safety
and ensure the sustainability of the IoT paradigm. Moreover, the nature and impor-
tance of IoT systems themselves make them attractive targets for attack. Therefore,
achieving the highest levels of security and privacy is crucial for reaping the full
benefits of IoT systems. However, owing to the broad range of IoT applications and
environments, several security and privacy concerns still need to be addressed.

This book addresses the gaps in IoT security and privacy by providing cutting-
edge research findings in the IoT security and privacy domains. The uniqueness of
this book volume emerges from combining both practical and management view-
points in one place. This book outlines the latest emerging trends in IoT security
and privacy from practical and management perspectives, focusing on the entire IoT
architecture, including the perception, network, application layers, and critical IoT
applications. The provided up-to-date body of knowledge is essential for researchers,
practitioners, and postgraduate students involved in IoT security, development, and
deployment. This book comprises nine chapters written by experts in the field, cov-
ering both the security and privacy aspects of IoT. The material is presented in a way
that allows each chapter to be read independently while contributing to a collective
understanding of the topic. The nine chapters of this book is organized as follows:

The book volume begins with a chapter titled “Cybersecurity Risk Assessment in
Advanced Metering Infrastructure,” authored by Shokry et al., which contributes to
the risk assessment of advanced metering infrastructure (AMI) as a category of IoT
and a component of smart grids. The AMI system is a type of the Internet of Things
(IoT) technology that is increasingly used today. Its purpose is to collect data on
the electricity consumption of customers and transmit this information to electricity
service providers (ESP) for storage, processing, and analysis. Integrating information
and communication technology (ICT) with the conventional electric power grid has
posed new security challenges for the AMI system. To enhance the security of this
system, one of the precautions that can be taken is using a risk assessment process.
The contribution of this chapter is an evaluation of the current cybersecurity risks
to the AMI system. By assessing these risks, it is possible to identify critical assets
that require protection, potential vulnerabilities, the likelihood of threats, and their
potential impacts. The authors establish a risk matrix to evaluate the potential hazards

xi
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and select the best risk management approach. This study identifies nine risks for
each AMI layer and component. The degree of risk, likelihood, and impact of each
risk are determined. Finally, the authors propose a mitigation approach to reduce the
risk level to a manageable degree.

Nowadays, artificial intelligence and machine learning play an influential role in
cybersecurity, especially in attack detection, prediction, and prevention. Chapter 2,
titled “A Generative Neural Network for Improving Metamorphic Malware Detec-
tion in IoT Mobile Devices,” authored by Turnbull, Tan, and Babaagba, addresses
the malware detection problem by applying a generative neural network (GNN) ap-
proach. The chapter discusses the increasing occurrence of malicious attacks on com-
puter systems and networks, specifically the emergence of new malware families tar-
geting information assets. One such group is metamorphic malware, which employs
multiple obfuscation techniques to alter its code structure between generations, mak-
ing detection and analysis more challenging. The research presented in this chapter
focuses on improving the detection of metamorphic malware in the Android operat-
ing system (OS) by augmenting training data with new samples generated through
deep convolutional generative adversarial networks (DCGAN) and features from ex-
isting metamorphic malware samples. Experimental results demonstrate improved
detection of novel metamorphic malware through this method.

Chapter 3, titled “A Physical-Layer Approach for IoT Information Security Dur-
ing Interference Attacks,” written by Farraj and Hammad, considers a heterogeneous
communication environment with IoT devices transmitting over a wireless channel in
the presence of adversarial IoT devices inducing jamming interference attacks. The
chapter discusses a communication environment involving IoT devices transmitting
wirelessly, with some IoT devices intentionally causing jamming interference at-
tacks. This chapter proposes using game theory and an iterated game formulation to
develop a physical-layer security approach to ensure that IoT devices can still access
information despite active interference. To reduce the scheduling overhead, a game-
theoretic transmission strategy for uncoordinated IoT channel access is considered,
which achieves the desired security metric while conserving IoT device resources.
The interactions between a representative IoT device and adversary devices are in-
vestigated to determine the effect of intentional interference on signal quality and
quantify the IoT information availability. The need for more efficient and scalable
scheduling approaches for large-scale IoT deployments is also considered. Simu-
lation results illustrate how a selected IoT device can achieve its desired security
performance over time using the proposed transmission strategies.

Chapter 4, titled “Policy-Driven Security Architecture for Internet of Things (IoT)
Infrastructure,” prepared by Karmakar, Varadharajan, and Tupakula, introduces a
policy-driven security architecture that consists of two major services: Secure smart
device provisioning and monitoring service architecture (SDPM) and policy-based
security application (PbSA). The security architecture suits programmable smart
network infrastructures such as IoT-enabled smart homes or offices, industrial IoT
infrastructures, and healthcare infrastructure. The SDPM service in the architecture
allows for the provisioning of devices to control the activities of malicious devices
using a dynamic policy-based approach. It provides pre- and post-condition-based
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policies to provision IoT devices securely and control their runtime operations. The
digital twin concept is used to represent the security status of the devices, which is
used for dynamic security status monitoring at runtime, automating the update and
patch management on-demand. Additionally, PbSA helps enforce fine-grained poli-
cies to secure the flows in the IoT network infrastructure, creating a secure network
infrastructure for IoT devices.

In addition to security, privacy is another concern in IoT deployments. Chap-
ter 5, “A Privacy-Sensitive, Situation-Aware Description Model for IoT,” authored
by Maamar et al., addresses the security privacy challenge in the IoT paradigm. In
this chapter, the impact of IoT on people’s private lives is discussed, and the ex-
pected benefits of IoT have become a concern for people. To address this concern,
the chapter proposes a model-driven architecture (MDA)-based approach to incor-
porate privacy concerns into thing specifications. This approach makes things aware
of privacy concerns and enables them to act accordingly, improving their assessment
of what needs to be done before violating privacy policies. The chapter uses WoT
thing description (WoT TD) as an example of a W3C thing specification to demon-
strate the approach. The approach defines the SituationPrivacy metamodel, merges
it with the WoT TD metamodel to create the SituationPrivacyWoTTD metamodel,
and generates the SituationPrivacyWoTTD model using an in-house case tool. The
chapter also provides a case study about a care center for elderly people to illustrate
and demonstrate privacy concerns and the MDA approach used to address them.

In recent years, smart home devices have become increasingly popular among
homeowners. The smart lock is one of the smart home devices whose market size
has increased significantly. Chapter 6, titled “Protect the Gate: A Literature Review
of the Security and Privacy Concerns and Mitigation Strategies Related to IoT Smart
Locks,” written by Hazazi and Shehab, discusses smart locks, which are smart de-
vices that use IoT-enabled sensors to allow keyless entry to residential and commer-
cial facilities. Unlike traditional locks, smart locks can be remotely operated using a
smartphone and offer additional features and functionalities. However, due to their
location within the home, it is essential to examine their security and privacy thor-
oughly. The chapter presents a literature review investigating the security and pri-
vacy concerns related to smart locks and the strategies proposed to mitigate these
concerns. The review considers both the perspective of researchers, based on their
analysis of smart lock security and privacy, and the perspective of end-users, based
on their day-to-day experience with smart home devices.

Chapter 7, titled “A Game-Theoretic Approach to Information Availability in IoT
Networks,” written by Farraj and Hammad, considers the information availability
for IoT devices. The chapter proposes a physical-layer security approach to pro-
tect information availability for IoT devices. The proposed approach uses a game-
theoretic-based distributed transmission strategy in an industrial sensor network en-
vironment where IoT devices compete to transmit their measurements over a shared
channel. The approach aims to satisfy quality of service (QoS) requirements while
minimizing coordination overhead. The proposed model focuses on one resource-
constrained IoT device that can transmit over the channel during specific intervals.
The game-theoretic strategy employs an iterated zero-determinant formulation to
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model interactions between IoT devices and develop an uncoordinated channel ac-
cess strategy that satisfies QoS constraints and achieves information availability ob-
jectives. Simulation results show that the proposed approach can achieve target per-
formance over time without the need for coordinated channel transmissions with
other IoT devices, provided certain conditions are satisfied.

Cyber-physical systems (CPS) are one of the application domains where the IoT
paradigm is deployed. Thus, CPS and IoT are linked in terms of security and privacy.
Chapter 8, titled “Review on Variants of Restricted Boltzmann Machines and Au-
toencoders for Cyber-Physical Systems,” prepared by Emad Ul Haq et al., discusses
two types of neural networks: Restricted Boltzmann machines (RBMs) and autoen-
coders, their variants, and their applications in CPS. RBMs are generative and can
generate new data, while autoencoders are used for dimensionality reduction. CPS
can use RBMs to identify hidden states and minimize system energy. Autoencoders
are unsupervised and study compressed data encoding autonomously. The chapter
also discusses breakthroughs in CPS, highlighting the limitations of previous evalua-
tion techniques and the importance of artificial intelligence design and analysis as an
integral part of CPS. Overall, the chapter provides insights into the advancements in
RBMs, autoencoders, and CPS and their potential impact on various fields, including
safety and artificial intelligence.

The book volume ends with Chapter 9, titled “Privacy-Preserving Analytics of
IoT Data Using Generative Models,” authored by Shareah et al., which discusses
the rapid growth of the IoT and its impact on our daily lives. The IoT allows for
data collection and sharing but also raises security concerns. The growing number
of connected devices implies instant surveillance of almost every action, sound, and
move we encounter daily. This has resulted in a decline in the efficiency and perfor-
mance of existing privacy-preserving methods. To address this, the chapter proposes
a generative privacy-preserving model for IoT data. The proposed model perturbs
data while preserving its features, and evaluation metrics show remarkable results in
terms of accuracy and privacy.

Ultimately, this book comprehensively covers the latest advancements, contem-
porary challenges, and pioneering research discoveries pertaining to IoT security
and privacy across various domains from practical and management perspectives. It
serves as a testament to the significant progress made in this field of study, which
is poised for continued growth in light of the rapid expansion of IoT technologies.
While additional insights and developments are expected in this area, the contribu-
tions featured in this book offer valuable ideas and insights that can aid in various
contexts and promote a holistic comprehension of IoT security and privacy. We trust
that readers will find this book engaging and relevant and a valuable addition to the
existing body of IoT security and privacy literature.

Ali Ismail Awad, United Arab Emirates University, Al Ain, United Arab Emirates
Atif Ahmad, The University of Melbourne, Melbourne, Australia
Kim-Kwang Raymond Choo, The University of Texas at San Antonio,

San Antonio, Texas, USA
Saqib Hakak, University of New Brunswick, New Brunswick, Canada
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Systémes d’information
University of Lyon, UCBL, CNRS,

INSA Lyon, LIRIS
Lyon, France

Abdallah Farraj
Department of Electrical Engineering
Texas A&M University
College Station, Texas

Zain Halloush
School of Computer and Cyber Sciences
Augusta University
Augusta, Georgia

Eman Hammad
Department of Engineering Technology

and Industrial Distribution
Texas A&M University
College Station, Texas

Qazi Emad Ul Haq
Center of Excellence in Cybercrimes

and Digital Forensics (CoECDF)
Naif Arab University for Security

Sciences (NAUSS)
Riyadh, Saudi Arabia

Hussein Hazazi
College of Computing and Informatics
University of North Carolina at

Charlotte (UNCC)
Charlotte, North Carolina

xvii



xviii Contributors

Muhammad Imran
Institute of Innovation, Science, and

Sustainability
Federation University
Brisbane, Australia

Kallol Krishna Karmakar
Advanced Cybersecurity Engineering

Research Centre
University of Newcastle
Newcastle, Australia

Ashraf A. M. Khalaf
Department of Electrical Engineering
Faculty of Engineering
Minia University
Minia, Egypt

Zakaria Maamar
College of Computing and IT
University of Doha for Science and

Technology
Doha, Qatar

Rami Malkawi
Department of Information Systems
Yarmouk University
Irbid, Jordan

Jalal Al Muhtadi
Center of Excellence in Information

Assurance (CoEIA)
King Saud University
Riyadh, Saudi Arabia

Mostafa Shokry Abd El Salam
Department of Infrastructure and

Information Security
Ministry of Electricity and Renewable

Energy
Cairo, Egypt

Kashif Saleem
Center of Excellence in Information

Assurance (CoEIA)
King Saud University
Riyadh, Saudi Arabia

Magd Shareah
Department of Information Systems
Yarmouk University
Irbid, Jordan

Mohamed Shehab
College of Computing and Informatics
University of North Carolina at

Charlotte (UNCC)
Charlotte, North Carolina

Nacereddine Sitouah
Department of Electronics, Information,

and Bioengineering
Polytechnic University of Milan
Milan, Italy

Zhiyuan Tan
School of Computing, Engineering and

Built Environment
Edinburgh Napier University
Edinburgh, Scotland

Uday Tupakula
School of Information and Physical

Sciences
University of Newcastle
Newcastle, Australia

Leigh Turnbull
School of Computing, Engineering and

Built Environment
Edinburgh Napier University
Edinburgh, Scotland

Vijay Varadharajan
Global Innovation Chair in Cyber

Security
School of Information and Physical

Sciences
Advanced Cybersecurity Engineering

Research Centre
University of Newcastle
Newcastle, Australia



Contributors xix

Fadwa Yahya
College of Sciences and Humanities

Al-Afla
Prince Sattam bin Abdulaziz University
Al-Kharj, Saudi Arabia
and
Multimedia, Information Systems &
Advanced Computing Laboratory
University of Sfax
Sfax, Tunisia

Tanveer Zia
Department of Forensic Sciences
Naif Arab University for Security

Sciences (NAUSS)
Riyadh, Saudi Arabia



https://taylorandfrancis.com


1 Cybersecurity Risk
Assessment in Advanced
Metering Infrastructure

Mostafa Shokry Abd El Salam
Ministry of Electricity and Renewable Energy, Egypt

Ali Ismail Awad
United Arab Emirates University, Al-Azhar University

Mahmoud Khaled Abd-Ellah
Egyptian Russian University

Ashraf A. M. Khalaf
Minia University

1.1 INTRODUCTION
The backbone of the smart grid (SG) is the advanced metering infrastructure (AMI)
system [1]. The data communication technologies and the conventional electrical
grid were combined to create the AMI system. The AMI system improves the
traditional power grid’s functionality, which is reflected in the end customer. The
AMI system benefits can be summarized as follows: the bidirectional communi-
cation links, the ability to notify the customer when reaching a threshold elec-
tricity consumption value, making the maintenance process for the smart meters
(SMs) easier, and reporting power outages to the electricity service provider (ESP)
immediately [2].

The Internet of Things (IoT) is a revolutionary, highest-rated technology that con-
nects numerous wired or wireless devices or things to the internet for data exchange
[3]. IoT technology improves the communication between entities, people, or objects
that are physically separated from one another. IoT technology is now widely used in
a variety of industries, including transportation, education, utilities, and business de-
velopment, as shown in Figure 1.1 [4]. Currently, there are around 26.66 billion IoT
devices worldwide, including smart energy meters, wearable technology, and home
automation systems [5].
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The AMI system’s primary goal is to gather, store, and analyze data on electric-
ity usage from the end customer to the utility center [6]. Smart meters (SMs), data
concentrators (DCs), meter data management systems (MDMs), and communication
channels utilized for data traversal are the four primary parts of the AMI system. SM
is in charge of gathering information from the intelligent end devices (IED) situated
in smart houses. These data show the customers’ electricity usage and the power sig-
natures of the devices used in smart homes. These data are subsequently transmitted
to the DC, which is in charge of gathering the data from various SMs. Finally, the
MDMs of the utility center (UC) receive the data that the DC has collected and will
store and analyze. All of these data are moved across the AMI system via wired or
wireless communication links [7].

Based on the preceding descriptions of the IoT and the AMI systems, as demon-
strated in Figure 1.1, it is demonstrated that the AMI system is one of the IoT system
examples that are currently in use. The SMs, DCs, and MDMs end devices that make
up the AMI system are linked through bidirectional communication cables, so that
they can exchange data with each other.

Lack of user knowledge, lack of IoT device upgrades (SM and DC in the case
of the AMI system), and the wireless communication channel all exacerbated the
AMI system’s vulnerability to cyber adversities and dangers [8]. The security pillars,
which include confidentiality, integrity, and availability (CIA) triad, target the data
collected and transferred in the AMI system. Unauthorized access to any component

recognition

Figure 1.1 Samples of IoT applications include AMI systems, smart factories, healthcare,
and smart surveillance.



Cybersecurity Risk Assessment in Advanced Metering Infrastructure 3

of the AMI system can significantly affect these pillars, which are fundamental to
the AMI security [9].

Any cyberattacks that take advantage of one of the AMI system’s weaknesses
could cause a partial or widespread blackout, depending on the significance of the
data passing through it. For instance, on December 23, 2015, enemies gained remote
access to the control center of three Ukrainian electrical distribution companies and
took over the systems for monitoring, controlling, and gathering data. More than
200,000 customers lost power as a result of malicious actors opening breakers at
about 30 distribution substations in Kyiv and the western Ivano-Frankivsk area [10].

Based on the ISO/IEC 27001 Standard for Information Technology — Security
Techniques — Information Security Management Systems — Requirements, the
procedure of risk assessment is implemented to protect the critical information sys-
tem from cyberattacks [11]. The risk assessment strategy may be applied to deter-
mine the primary critical assets and the current vulnerabilities associated with these
assets, and the threat agent associated with the AMI system must be identified by
evaluating the possible risks of the AMI system. The risk assessment process is also
necessary to demonstrate the likelihood, potential consequences, and necessary mit-
igation measures in order to reduce the risk level [12].

The definition of the AMI system is that AMI system is one of the existing critical
information systems and its operation depends on gathering electricity consumption
data. Thus, the risk assessment process is crucial for the AMI system’s security.
The major goal of this chapter is to carry out a security risk assessment of the AMI
system, which includes all steps of the risk assessment process. This objective should
enhance the existing security policies for the IoT-based AMI system.

The rest of this chapter is organized as follows: Section 1.2 covers the two pillars
of our work, which are the AMI system and information security risk assessment.
This section illustrates the essential elements, the objective, and the AMI system’s
tiers. Furthermore, it demonstrates the information security risk assessment objec-
tive, including the required steps for performing the risk assessment process and the
different risk analysis approaches. Section 1.3 shows the results of assessing the po-
tential cybersecurity risks of the AMI system. This section determines the existing
critical assets, vulnerabilities, the probability in which the attack will occur, the im-
pact of these attacks on the AMI system, and the risk levels associated with samples
of attack scenarios. Section 1.4 provides an explanation for the findings in the pre-
ceding section. Furthermore, samples of mitigation approaches are recommended to
mitigate the obtained security risk scenarios. Finally, Section 1.5 provides a conclu-
sion of our work.

1.2 PRELIMINARIES

1.2.1 ADVANCED METERING INFRASTRUCTURE

AMI is one of today’s most important critical information infrastructure systems, and
it can be seen as the first step in digitizing the conventional electricity grid [13]. Its
primary goal is to gather customer power consumption data from both SMs and DCs,
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which will then be transmitted over bidirectional communication lines to MDMs for
storage and analysis [14].

The AMI system is an improvement of the automated meter reading (AMR) sys-
tem. The AMR system is used to transfer the traditional electricity meter’s energy
usage to the electricity service provider (ESP) over a unidirectional communication
channel. The AMI system introduced a bidirectional communication channel be-
tween the SM and the ESP that improves the functionality of the AMR system. The
end user’s electricity consumption data are collected through these two-way commu-
nication channels, and remote commands are sent to the SMs to carry out specified
tasks, including upgrading the firmware, establishing connections, and exchanging
security keys [15].

1.2.2 AMI COMPONENTS

The AMI system comprises four main components, namely, SMs, DCs, MDMs, and
the communication channels between them, as shown in Figure 1.2. The major pur-
pose of SM, the first AMI system component, is to collect data on customer-specific
electricity use [16]. SM consists of two basic components, the first of which is con-
cerned with monitoring the user’s energy usage. The second component is in charge
of carrying out specialized tasks, including remotely updating the firmware, connect-
ing or detaching from a distance, identifying, and averting electricity thievery [17].

The DC, a device serving as a gateway between the SMs and the MDMs in the
UC, is the following part of the AMI system [18]. DC does two basic tasks. The
first is gathering data from various SMs and sending them to the MDMs. The second
one involves accepting commands from MDMs and delivering them to the SMs for
a specified activity [19].

The MDMs, a software and hardware combination located in the ESP’s data cen-
ter, are the next part of the AMI system. The MDMs’ tasks can be summed up as
collecting information from SMs, directing SMs to perform certain tasks via the DC,
and monitoring various AMI components, including the transmission network, the
centers, and the power that is produced [20].

In the AMI system, communication networks are crucial, which is the last compo-
nent of the AMI system. They are in charge of tying together all of an AMI’s major
parts, including the MDMs, DCs, and SMs [14]. Two-way communication pathways
are employed to deliver instructions to the SMs from the UC as well as commands
to both DCs and MDMs from SMs [21]. Although the communication methods uti-
lized in an AMI differ greatly, they may typically be divided into wired and wireless
types. Because of the quantity and importance of the information sent through the
route, using the appropriate communication mechanism is crucial, and it is essential
to safeguard the AMI [22].

The hardware layer, data layer, and communication layer are the three sub-layers
of the AMI system [23] as shown in Figure 1.2. The AMI hardware layer includes
SM, DC, and MDM, which is located in the service provider data center [23].

The data gathered from the IED to SM are included in the data layer of the AMI
system. These data contain the unique identifier for each device and the customer’s
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Figure 1.2 AMI components including the AMI layers and tiers. The SM, DC, and MDMs
represent the AMI hardware layer, the interconnections between these devices represent the
AMI communication layer, and the data transferred represent the AMI data layer.

electricity consumption. They also include firmware that has been transferred to both
SM and DC as well as MDM setups and commands sent from MDMs to SM or DC
[23]. The communication layer, the final layer of the AMI system, consists of the
communication pathways that run from the SM to the MDMs through the DC and
can be either wired or wireless in design [23].

1.2.3 AMI TIERS

According to Figure 1.2, there are three main stages of the AMI. Each stage includes
a few of the AMI system’s parts. The home area network (HAN), neighbor area
network (NAN), and wide area network (WAN) are the three stages of an AMI. The
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components in each stage of an AMI can be connected via various communication
protocols [24].

The first tier of the AMI is the HAN and is positioned on the client’s property,
which may be either a home or a business establishment. It connects an SM and
IEDs. Each IED in a HAN expends energy in the form of data, which is sent to an
SM through the two-way transmission link. Due to the limited size of the data carried
via the HAN, low-power communication methods like Wi-Fi, Bluetooth, and Zigbee
can be employed [25].

As part of the AMI structure, the NAN is the second stage, which can connect
many HANs. The primary part of a NAN is the DC, which receives data from SM
via HANs. The communication system needs to be capable of transmitting massive
amounts of information more securely because a NAN has more subscribers and
more data than a HAN. Hence, the most widely employed communication technolo-
gies in the NAN are mobile networks (LTE/2G-3G systems), fiber optics, and power
line communication (PLC) systems [26].

The WAN serves as the final tier, which links all the HANs and NANs with the
UC. The MDM system, which is connected to the WAN, gathers, maintains, and
analyzes the data to fetch commands or instructions directly to the NAN and finally
onto the HAN. Wired communication is chosen since it can send the obtained data
more effectively and securely due to the great path length between the NANs and the
UC, which are located in different locations. Power line communications (PLCs) are
widely utilized to link HANs to NANs and subsequently NANs to WAN [27].

1.2.4 INFORMATION SECURITY RISK ASSESSMENT

Critical infrastructure is defined as “systems and assets, whether physical or virtual,
so critical that the inability or destruction of such systems and assets would have a
catastrophic impact on security, national economic security, public health or safety,
or any combination of those things,” as declared in the NIST framework for improv-
ing the cybersecurity of critical infrastructure [28].

The critical information infrastructure systems, according to the NIST framework,
are those whose operations depend on technology in general, including information
technology (IT), industrial control systems (ICS), and connected devices, more gen-
erally, such as the IoT. Because of the reliance on technology, communication, and
connectivity, possible vulnerabilities have changed and grown, and the risk to opera-
tions has increased [29].

As evidenced by its major aim, the AMI system can be regarded as one of the
currently important systems whose operation is dependent on data gathered from
IoT devices represented by SM and DC. Due to the importance of the information
it delivers, the AMI system functions as one of the fundamental information infras-
tructure systems [30]. Due to the AMI system’s potential flaws, attacks from both
internal and external sources could compromise these data and result in electricity
theft, customer data theft, partial blackouts, and large outages [31]. As a result, it’s
imperative to assess the AMI system in the context of the possible risk.
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Information security risk assessment (ISRA) is the cornerstone of the risk man-
agement process. ISRA aims to identify the existing critical assets in the organization
and their valuation, assess the existing vulnerabilities, and identify the probability
of attacks occurring via various threat agents and their consequences on both the
crucial assets and the overall system functions [32]. Finally, the existing security
controls must be assessed to determine if they are effective and adequate or if extra
security controls are required [33]. ISRA comprises three main tasks that are deter-
mined as follows: risk identification, risk profiling, and risk treatment, as shown in
Figure 1.3 [34].

The first task of ISRA is risk identification, which establishes the main orga-
nization’s assets, vulnerabilities, threats, asset valuations, and criticality level. The
critical assets of any critical system may include people, processes, technologies,
and information, regardless of its state of processing, storage, or transmission. Also,
the possible threat agents that can exploit existing vulnerabilities must be considered
during this step [32].

The following task of ISRA, known as risk profiling, combines the existing as-
sets, vulnerabilities, threats, and possible risks with the risk score value to simplify
the evaluation of risk criticality. This stage establishes the current security controls
and, using an evaluation procedure, ranks the current threats. Choosing whether a
quantitative or qualitative risk assessment approach will be employed is one of the
stage’s primary goals [32].

Risk treatment is the last phase of the ISRA task. The organization must choose
the risk mitigation strategy to bring the risk’s impact to a level that is manageable
during the risk treatment stage. Risk mitigation can be accomplished by either shar-
ing the risk with other third-party entities or adding some countermeasure techniques
to lessen the consequences of the risks. Additionally, the organization may choose to
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Figure 1.3 Information risk assessment’s main stages: risk identification, risk profiling, and
risk mitigation.
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accept the current risk if it is within its risk-tolerance parameters and thus agrees to
bear the cost when it arises [32].

Risk analysis is the process of assessing both the possibility that the threat will
arise and the side effect of those dangers on the targeted system, which in our cir-
cumstance is the AMI system. It is an essential phase in the ISRA, especially with a
large quantity of risks, which helps to prioritize risks and choose the proper risk miti-
gation technique for each risk. One of ISRA’s primary responsibilities is determining
the suitable risk analysis approach that can be carried out by each entity, depending
on the system that needs to be evaluated and the capabilities of each risk analysis
approach. There are multiple risk analysis approaches, such as quantitative, quali-
tative, semi-quantitative, knowledge-based, model-based, questionnaire, and expert
systems [13].

Quantitative risk analysis is an objective approach that is based on a set of for-
mulas, rules, and equations that focused on using the monetary value of the critical
assets in the system. It can be applied mostly when the cost-benefit analysis (CBA)
of the risk assessment process is required [35]. There are three main calculations
that are applied in the quantitative approach: single loss expectancy (SLE), the an-
nualized rate of occurrence (ARO), the annualized loss expectancy (ALE), and the
safeguard value, as shown in the following formulas [36]:

ALE = SLE×ARO (1.1)

Equation 1.1 shows how to calculate the annualized loss expectancy of the asset.

SLE = AV×EF (1.2)

Equation 1.2 illustrates the calculation formula of single loss expectancy based on
the asset value (AV) and exposure factor (EF).

Safeguard value = (ALE before−ALE after)−Annual safeguard cost (1.3)

Equation 1.3 demonstrates the calculation of the required safeguard value for the
asset based on the annualized loss expectancy before the risk assessment task, an-
nualized loss expectancy after the risk assessment process, and the annual safeguard
cost.

Qualitative risk analysis is a subjective approach that doesn’t rely on the numerical
values as with quantitative risk assessment but depends on assigning relative values
for the security risk variable such as low, high, and critical [37]. Qualitative risk
analysis approach uses the expression of likelihood instead of probability that is used
in the quantitative risk analysis approach [38]. The main formulas of the qualitative
risk assessment approach are as follows:

Risk = Threat×Vulnerability× Impact (1.4)

Equation 1.6 shows the calculation of the risk for the qualitative risk analysis ap-
proaches based on the existing vulnerabilities, potential threats, and the overall con-
sequence.
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Likelihood = Threat×Vulnerability (1.5)

Equation 1.5 illustrates the relation between the likelihood of threats’ occurrence, the
current weaknesses, and the potential threat for the qualitative risk analysis approach.

Semi-quantitative represents a combination of both quantitative and qualitative
risk assessment approaches to get the benefits from both. It has the advantages of
simplicity as a qualitative approach and high accuracy level as a quantitative ap-
proach [33]. Its principle of operation depends on using approximated ranges (e.g.,
0–15, 16–35,. . .) and then translating these ranges to qualitative values to simplify
the comparison between the values within the same range or in different ranges [39].

A model-based approach is another example of the risk analysis approaches. One
of the most prominent example of the model-based risk assessment approach is the
unified modeling language (UML) that requires both a tool and an expert to perform
the risk assessment procedures [32]. The principle of operation for the model-based
risk assessment approach is creating at least five basic diagrams that are represented
by the assets diagram, threat diagram, risk diagram, treatment diagram, and treatment
overview diagram [40].

1.3 IMPLEMENTATION OF THE AMI SYSTEM’S
RISK ASSESSMENT

The AMI system provides advanced features than the traditional electricity grid as
energy monitoring, recording, data collection, load management, and advanced con-
trol capabilities. These features improve the efficiency of the grid and thus enable
the customers to manage their electricity usage easily. The major objectives of AMI
system are collecting the data from the end customer, transferring the data to the ESP
for further analysis, and sending the control command from ESP to the end devices
such as DC and SM for remotely managing, updating firmware, or remotely shutting
down [41].

Considering the significance of the AMI system’s role and its high criticality level,
the task of risk assessment has to be accomplished to the AMI system to define the
existing vulnerabilities, the potential threats, and the consequence of these threats on
the AMI performance. The appropriate mitigation technique will then be employed
to reduce the risk to an adequate level for the regular functionality of the AMI system.

1.3.1 RISK IDENTIFICATION PHASE FOR THE AMI SYSTEM

As shown in Figure 1.3, the initial stage of the risk assessment procedure on any
system is the risk identification step that focuses on determining the main critical
assets in the system that is required to be assessed and considered as the major step
in any risk assessment process. Thus, the primary goal of this section is to identify
the key and essential components of the AMI system, which will be used further in
determining the main requirements for making use of the risk assessment procedure
to AMI system.

The objects that need to be safeguarded, are likely to be exposed, and have a neg-
ative impact on the overall effectiveness and intent of the AMI are referred to as the
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AMI assets. Any item that has the potential to affect the three key security properties,
namely, confidentiality, integrity, and availability, if a threat takes advantage of any
flaws in it can be considered an asset of the AMI [42].

AMI assets can be divided into tangible and intangible assets. AMI tangible assets
start from the end customer in the entity, which are home or industry, passing by the
SMs, DCs, and the MDMs in the data center of the ESP [43].

The data sent across communication lines or present on the SMs, DCs, and
MDMs, which can be represented by their firmware, are another essential asset of
the AMI. AMI intangible assets can be represented by the ESP’s reputation that may
be affected by the availability and confidentiality security attributes [44].

AMI assets can be classified into three main categories, namely, information as-
sets, AMI resource assets, and services assets, as shown in Table 1.1. Information
assets for the AMI can be determined as the audit data, the information about the en-
ergy usage for the customer, any policies or configurations in the MDMs of the ESP,
locally protected information in the main data center, and the data that are transmitted
through HAN, NAN, or WAN [24].

The resource assets of the AMI can be illustrated through its core components:
SM, DC, and communication links. Additionally, the software and applications in-
stalled within the ESP data center are taken into account. Furthermore, other hard-
ware within the AMI system is encompassed as smart appliances from the customer’s
perspective, and any hardware located in the primary data center. Finally, if a token
is employed in the AMI system to verify the customer’s validity, it will be added to
the AMI resource assets [45].

The public key infrastructure (PKI) service, that can be employed as an authen-
tication method for the essential AMI elements, may be one of the service assets.
Upgrading and configuring the firmware of the SM or DC remotely are AMI ser-
vices. The initialization step that is performed for the SM can be included as an AMI
service asset. Furthermore, the access control service whether for the MDMs, which
are located in the main data center, or for protecting the end devices from unautho-
rized access can be included as one of the AMI service assets. [46].

Table 1.1
The AMI Asset Classifications

AMI Resources Assets AMI Data Assets AMI Services Assets

SM, DC, and comm. links Audit data PKI
MDMs’ software Energy consumption Remotely config.
Smart appliances MDMs’s configurations Access control
Token for authentication Local data in ESP CIA
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The main services that are provided by the AMI include confidentiality, integrity,
and accountability services that can be provided to secure the customer data. The
system’s accessibility, and the main security services that are applied by the main
data center administrator can also be included as an AMI service asset [14].

1.3.2 AMI VULNERABILITIES

The first process of the risk assessment also includes determining the existing vul-
nerabilities of the AMI system. Security is a new concern for this AMI system due
to the integrating ICT into conventional power systems. The majority of the AMI
components, including the SMs and DCs, are located outside the UC, making them
susceptible to both physical and digital attacks. This section will cover security con-
cerns pertaining to the essential hardware and software elements of an AMI. We
will think about weaknesses, potential attacks, and how an attack would affect the
components [47].

1.3.2.1 AMI Hardware Layer Vulnerabilities
As depicted in Figure 1.2, the SMs and DCs make up the AMI system’s hardware
layer. An SM outside of the UC has a number of risks due to its nature. Additionally,
as we explained previously, a UC can command an SM by sending commands across
a bidirectional channel to the device. The remote disconnect command can be used
by the UC to start up or shut down the SM. This characteristic is necessary, but it
also leaves the SM vulnerable to exploitation from someone pretending to be the
UC. This command can be sent by the attacker to numerous SMs, which could result
in a denial-of-service (DoS) attack [45].

Due to an SM’s limitation of resources, such as internal storage, another secu-
rity issue develops. A surprisingly small amount of storage is available on an SM,
and it is utilized for both the firmware and the data gathered from users. Due to its
limited storage capacity, firmware upgrades that are crucial, particularly security up-
dates, may not be possible. Additionally, the SM could not have sufficient storage
for encryption operations. They could be kept outside the SM chip on supplementary
disc storage, in which they’re exposed to traditional and cyber incursion. An attacker
may take advantage of this weakness by using a buffer overflow attack to send out
harmful data that quickly drain the SM buffer and make it stop accepting data [42].

A significant aspect of an SM is that customers may open it through a web page,
enabling them to track energy usage and make payments. Furthermore, this function-
ality implies that data saved in the SM, such as information on energy usage or loaded
firmware, are susceptible to intrusions via the web application, such as distributed de-
nial of service (DDoS) attacks, and SQL injection attacks. An authentication bypass
attack can be carried out by an attacker. This compromises the confidentiality, pri-
vacy, and accessibility of the consumer’s personal data because they can alter or steal
data from the SM even without knowing the customer’s login information [43].
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These flaws and cyberattacks that target an SM may have a detrimental effect on
the functionality and performance of the AMI system. One of the main outcome of
an attack on an SM is the stealing of the software installed on the SM or information
about energy utilization. Understanding the energy usage of the client can expose the
particular features of the IED they use, putting their privacy at danger. Additionally,
a change to the firmware may cause the SM to malfunction and become inopera-
ble [48].

Attacks similar to those against SM can also be made to a DC because numerous
SMs are connected to the UC by a single DC, but they may have a higher impact,
particularly if the AMI has either an indirect or a mesh structure architecture. A DC
attack can have an impact on several SMs, resulting in the localized denial of power
for multiple SMs at once or the theft of data from all the consumers linked to the
hacked DC [49]. Table 1.2 shows the weaknesses including both SMs and DCs, the
cyberattacks that can be launched to exploit them, and the effects of these threats on
either the target components of the AMI or the entire AMI system.

1.3.2.2 AMI Data Layer Vulnerabilities

According to what had been discussed earlier, the AMI’s major job is to gather in-
formation from SMs and send it by DCs toward the UC, to be stored and processed.
The AMI design facilitates the transport of enormous amounts of data. Components
of the AMI’s status, such as security logs, the users’ personal information, and en-
ergy consumption, are all included in these data. These data are susceptible to attacks
including data insertion, data modification, and data hijacking, as listed in Table 1.3.
Any of the three AMI layers can be used to carry out these threats [50].

Hackers might update or steal data and jeopardize the service’s security or privacy
if they were able to modify or insert data into the HAN. The WAN’s data, which is
located in the UC, could be modified by an internal or external attacker. For instance,

Table 1.2
Attacks That Exploit Security Flaws in the AMI Hardware Layer

AMI Item Vulnerabilities Attack Consequence

SM & DC Bidirectional communications
channels

Sends malicious code to SMs Denial of power

SM Inadequate resources Buffer overflow Local denial of
power

DC DC outside the UC of the DC Modify the firmware Data theft
MDMs Improper authentication

configuration
Steal the MDMs
configurations

Widespread denial
of power
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Table 1.3
AMI Data Layer Vulnerabilities and Related Exploits

Vulnerabilities Attack Impact

Customer and the SM direct
connection

Modify energy consumption Data loss or alteration

Remotely updating feature Firmware manipulation SM and DC shut down
Customer to SM interference Fake data injection Electricity fraud
Lack of security configuration

in the UC
MDMs configuration

manipulation
compromise the integrity

of the data

they might alter the instructions given to the SMs, which would make the SG unstable
and perhaps result in a denial of power.

The fact that an AMI uses the internet protocol (IP) to send data renders it sus-
ceptible to attacks that are successful targeting systems based on IP, such as teardrop
attack, IP spoofing, and others that can result in data loss [51].

Table 1.3 outlines the relationships for both the AMI system’s data layer vulner-
abilities, related assaults, and the effects of those incidents. Because of the close
relationship between the user and the SM, data alteration, firmware modification,
and illegitimate tampering with a user’s electricity utilization are the three categories
of attacks against an AMI system’s data layer currently.

1.3.2.3 AMI Communication Layer Vulnerabilities
As was previously mentioned, IEDs are coupled to SMs, SMs with DCs, and DCs
with UC via communication links. Thus, they are the component of the AMI sys-
tem that is most susceptible to dangers because of the significance and volume of
data sent via the means of the channels of communication. HANs and NANs utilize
wireless communication technology, making them vulnerable to man-in-the-middle
(MITM) attacks and other cyberattacks on wireless communication technologies.
This could result in the loss of consumer information [52].

One more weakness of the communication links is the breakdown of a com-
munication channel, which might transpire due to disturbance, cable failures, net-
work degradation, or degradation of channel capacity. This could result in isolated,
widespread power outages and endangering the service’s accessibility [53].

Table 1.4 outlines the relationships between the AMI communication layer’s vul-
nerabilities, the attacks that take advantage of them, and the effects on the system’s
performance and other characteristics. The usage of wireless connectivity between
the SMs and DCs is the primary flaw in the AMI system’s communication layer.
Wireless transmissions are susceptible to widespread assaults such as failure of the
communication links and session hijacking that can result in data loss or fraud.
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Table 1.4
Security Flaws in the AMI Communication Layer and Subsequent Threats

Vulnerabilities Attack Impact

Wireless communication Man-in-the-middle attack Data theft
cation technology used

Wireless communication Session hijacking Data manipulation
cation technology used

Wireless communication Bandwidth congestion latency in data
technology used transfer

1.3.3 RISK PROFILING PHASE FOR THE AMI SYSTEM

After completing the first step of the risk assessment process on the AMI system,
which focused on identifying the system’s primary assets, vulnerabilities, and po-
tential points of attack, risk profiling, as shown in Figure 1.3, is the next stage of
evaluating the security risk associated with the AMI system. This stage focuses on
matching the predefined AMI system’s critical assets, the attack, and the potential
risk.

By assessing the possibility of the attacks occurring and their effect on the AMI
system, the goal of this stage is accomplished. Additionally, the likelihood level and
the consequence level are matched to create the risk matrix, which is then used to
rank probable risks. The risk matrix will be utilized in the final step of the risk assess-
ment procedure to choose the best risk management strategy, which will be followed
by determining the possible risk level associated with each attack.

Identifying the possibility of an attack on the AMI system occurring is the initial
step in this phase. The likelihood of the attack is mostly determined by the same
factors as listed below: the attacker’s motivation for attacking the AMI system, the
threat agent’s capabilities, and the potential attack opportunities [54].

There are a number of reasons why threat agents might target the AMI system,
both internally and externally. Avoiding billing and electricity theft from the cus-
tomer side is one of the well-known motives. External attackers are motivated for a
wide range of causes including the points outlined below: to reduce revenue, harm
a company’s reputation, prevent the deployment of meter, harm infrastructure, com-
promise confidentiality, and manipulate the energy market [54].

For a threat agent to successfully attack the AMI system, they need to acquire a
certain set of skills. The cost, the attacker’s skills, the attack’s execution time, and
the vulnerabilities already in place that the attacker will use are all included in the
threat agent’s capabilities [54].

The opportunity that the threat agent will exploit is the final factor in calculating
the likelihood level. These chances can be identified by the AMI system’s current
weaknesses. One of the vulnerabilities that the attacker may exploit to compromise
the MDMs is the absence of an access control mechanism [54].
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The possibility of the attack occurring has four levels, as stated in Table 1.5, and
they are rare, possible, likely, and certain. Rare likelihood level refers to the low
probability that these attacks will occur. Possible level denotes that the attack could
happen at any moment. Likely level indicates that these attacks will be probably per-
formed in most circumstances. Certain level denotes that these attacks are typically
predicted to occur [55].

The level of likelihood is dependent on the level of the purpose, means, and oppor-
tunity, as shown in Table 1.5. It is demonstrated that the likelihood value is directly
proportional to the purpose, mean, and opportunity levels. The possibility of the at-
tack occurring is reduced because the motive level is low. The likelihood of an attack
occurring decreases with decreasing threat agent capabilities. The attacker has few
opportunities, which reduces the possibility of an attack.

The level of consequences is the next step in this phase. The attack’s potential
impact on the AMI system’s essential components and function is indicated by the
attack’s consequence level. The three effect levels, which are negligible, substantial,
and catastrophic, are shown in Table 1.6. Insignificant consequence levels signify that
only one AMI system component is compromised, and as a result, they do not have
an impact on the entire AMI system. The attack did not disrupt the main operations
of the AMI system, but various AMI components were affected, according to the

Table 1.5
Likelihood Levels of the Attack Occurrence

Motive Mean Opportunity Likelihood

Low Low Low Rare
Low Low High Possible
Low High Low Possible
Low High High Likely
High Low High Likely
High High Low Likely
High High High Certain

Table 1.6
Consequence Levels of the Attack

Consequence Level Definition

Insignificant The AMI function is slightly impacted
Moderate The AMI function is degraded significantly
Catastrophic Inflicting the AMI system tremendous damage
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Figure 1.4 Risk matrix: matching between the likelihood and consequence levels.

moderate consequence level. The catastrophic level denotes that the attack affected
every AMI system’s components, impairing all of its operations and may cause a
widespread blackout [56].

The following step in this phase is matching the likelihood and consequence levels
that were previously computed to obtain the risk matrix. The risk level depends on
both the likelihood and consequence levels, as illustrated in Eq. 1.6 [57].

Risk = Likelihood×Consequence (1.6)

The risk matrix, which displays the risk levels based on both the likelihood and
consequence levels, is shown in Figure 1.4. There are four risk categories, namely,
low risk (L), moderate risk (M), high risk (H), and severe risk (E). The risk can
be accepted, according to the low-risk value. The moderate-risk level denotes the
necessity of taking steps to monitor the risk. An action must be taken to reduce
the danger level due to the high-risk level. The extreme-risk level signifies that the
response will be highly appreciated and is necessary to reduce the risk.

This phase’s final step involves assessing the predetermined critical assets, vul-
nerabilities, assaults, likelihood, consequence, and risk levels to create risk scenar-
ios. These risk scenarios will include the hardware, data, and communication layers
of the AMI system, all of which were previously specified.

AMI system attack scenarios, the AMI layer that is impacted, the possibility that
the attack would occur, the severity of each attack scenario, and the risk involved are
shown in Table 1.7. Based on the risk matrix displayed in Figure 1.4, the risk level is
computed.

1.3.4 RISK TREATMENT PHASE FOR THE AMI SYSTEM

The AMI system’s critical components, weaknesses, and potential assaults are first
identified. In the preceding part, the likelihood, impact, and risk matrix were also es-
tablished. Finally, several attack scenarios specific to the AMI system were outlined.
The risk treatment phase, which will be our next phase, is the final stage of the risk
assessment, as shown in Figure 1.3. The risk treatment phase focuses on selecting
the best approach to reduce the unacceptable risk to a manageable level. There are
three methods for dealing with risks, namely, accepting the risk, reducing the risk,
and transferring the risk [58].

By implementing security measures like encryption, authentication, and intrusion
prevention systems, the risk can be reduced. These security measures help to bring
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Table 1.7
Risk Scenarios: Including the Assets, the Likelihood, and Consequence
Levels

Risk AMI Attack Likelihood Consequnce Risk
Code Layer Scenario Level Level Level

R1 Data Breaks the applied encryption Rare Catastrophic H
R2 Data Firmware manipulation Likely Moderate H
R3 Hardware Injecting malicious code Likely Moderate H
R4 Communication Eavesdrops wireless

communication channel
Likely Moderate H

R5 Data Eavesdrops to steal the data Likely Moderate H
R6 Hardware Gains improper access to

assets
Likely Moderate H

R7 Hardware Discovers MDMs admin
authentication information

Likely Catastrophic E

R8 Data Access browses files to collect
information

Likely Moderate H

R9 Data Duplicate keys of the PKI
system

Rare Moderate H

down the danger to a manageable level. If the risk has little impact on how the system
functions, it can be accepted, and it is preferable to do so than accepting the financial
burden of adding more safeguards. Risks may be transmitted to any other third party
for treatment [58].

The suitable risk treatment approach will be chosen using the risk matrix, as in-
dicated in Figure 1.4. As shown in Figure 1.4, the L letter denotes a risk that can be
accepted, whereas the M, H, and E letters represent risks required to be reduced by
implementing extra security controls.

1.4 DISCUSSION AND RECOMMENDATIONS

By assessing the AMI system against the potential cybersecurity risks, there are nine
risk scenarios associated with the AMI system, as shown in Table1.7. Each risk sce-
nario has been linked to its relevant AMI layer. The likelihood, consequence, and
risk level of each risk scenario are also determined. It can be determined that cer-
tain attack scenarios such as R1, R2, R4, R5, R6, R7, and R9 have high-risk levels,
whereas R8 has an extremely high-risk level.

Using the risk matrix provided in Figure 1.4, the attack scenarios, the risk level
for each risk scenario, and the risk management techniques are shown in Table 1.7.
All of these risk scenarios must be reduced.

It is possible to secure the AMI system from cyberattacks and minimize the
current risk levels to acceptable levels by using a variety of mitigation strate-
gies. The three major risk mitigation tactics are intrusion detection system (IDS),
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authentication, and encryption. These mitigation strategies will be discussed in this
section.

Encryption is a crucial method for safeguarding the AMI system’s data layer.
The risk scenarios relating to the AMI’s data layer can be mitigated with encryption
technique. By encrypting the data passing through the AMI system using a strong
encryption approach, the risk scenarios R1, R2, R5, and R8 can be reduced.

Preserving the data conveyed via an AMI system requires confirming the data’s
origins. Procedures for authentication are essential to safeguard the hardware layer
of the AMI, covering SMs and DCs. Applying a robust authentication technique to
the AMI system will minimize the security risk scenarios R3, R6, and R7 that are
previously determined.

Creating node-to-node network interactions requires authentication. Authentica-
tion can stop attacks when an attacker pretends to be a UC and transmits shutdown
notifications to several SMs. Additionally, the attacker can transmit harmful data to
the DC, potentially affecting the DC’s firmware and the DC’s performance, thus the
performance of the entire SG [59].

An IDS is a potent tool for protecting an AMI system’s data and communication
layers from attackers who may otherwise take advantage of undiscovered system
gaps and cause disruptions. IDSs are regarded as a system’s initial line of defense.
Clients can use application server to offer up information or make payments. There-
fore, a privacy protection step is needed to secure the confidentiality of this critical
data [60].

1.4.1 RECOMMENDATIONS

Fully homomorphic encryption (FHE) is a type of encryption that relies on running
calculations on the encrypted data without first decrypting it. According to Ref. [61],
these techniques can be applied to systems that include sensitive data, like the AMI
system. A distributed ledger that can be used for encryption is known as a blockchain.
As a result, a blockchain is a potent new tool for cybersecurity since it can foster
trust in an untrustworthy environment. The decentralized ledger includes transactions
from numerous devices. To guarantee data integrity, the blockchain’s participants
encrypt and store the data [62].

The AMI system can benefit from the usage of cloud computing technologies as
authentication mitigation method. The cloud computing technology clusters system
components into security groups as a default isolation feature [63]. This helps to
stop disallowed access or the installation of harmful data to the end equipment by
attackers since the possibilities of interaction between entities by default are limited.
The authentication and authorization methods necessary for the AMI system can be
improved with the help of this feature.

Artificial intelligence (AI) is employable for securing an AMI system as a mitiga-
tion strategy. An AI system may gradually understand the behavior of every device in
the AMI system via deep learning and machine learning. As a result, an AMI system
may discover and identify dangerous behavior faster thanks to AI than it can with
conventional methods. Because of its automatic ability to scan through enormous
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volumes of both data and traffic, AI is able to discover dangers that are concealed as
a routine activity [64].

AI has the ability to quickly scan a whole AMI system for vulnerabilities, both
known and undiscovered, that might one day be exploited. Many IDSs that are used
to find vulnerabilities and threats use AI at their core. AI can enable reliable client
verification utilizing biometrics like fingerprint readers and facial recognition [65].

1.5 CONCLUSION

One of the existing examples of an IoT system is the AMI system, which uses IT to
digitize the conventional electricity grid. The primary goal of the AMI system is to
gather data from the customer domain utilizing the SM, DC, and UC, so that it may
be gathered, stored, and analyzed by the MDMs. These data are traveling through
the AMI system via bidirectional communication channels.

The spread of interconnected devices presents a variety of security challenges for
IoT technology, increasing the potential for attacks. The IoT system faces a security
difficulty due to the linked devices’ non-traditional locations, which makes achiev-
ing physical security challenging or impossible. IoT sensor-enabled devices may be
situated in remote or inhospitable areas, making it nearly difficult for humans to
configure or intervene. Thus, the likelihood of upgrading these devices, which leave
them susceptible to attacks, is diminished.

One of the approaches that should be used to evaluate the effectiveness of the
security controls currently in place for any important system, including the AMI
system, is risk assessment. The outcome of using the ISRA on the AMI system may
help in preventing any anticipated attacks on the system.

The three primary ISRA phases were applied to the AMI system in this chapter.
When employing the ISRA to the AMI system, the critical assets, vulnerabilities, and
potential attacks that can be conducted against each component of the AMI system
are shown. The risk matrix and the possibility of the occurrence, impact, and attacks
were shown. Additionally, nine risk scenarios are obtained and linked with the AMI
layer that was affected by the attack, the chance of its occurrence, and the severity of
its effects, and the risk level of each attack scenario was displayed.

Finally, a suitable risk treatment action that can be accepted, mitigated, or
transferred must be applied depending on the risk level for each attack scenario.
This chapter provided examples of countermeasure methods that might be used to
strengthen the AMI system’s security safeguards. Encryption, authentication, and
IDS are the mitigation strategies that have been suggested, which can be combined
with the AMI system to increase system security.
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2.1 INTRODUCTION
Android-based mobile devices contribute significantly to the evolution of IoT across
several business sectors, including healthcare, industrial control systems, smart
homes, and the automotive industry. However, due to Android’s dominant position
in the mobile market, the platform is the focus of regular targeted attacks [45]. Mali-
cious code/software often referred to as malcode or malware is created to distort the
functionality of a machine or network. These include several groups whose design
functionalities differ such as Worms, Trojans, Adware, Rootkits, Spyware, Crypto
malware, and Viruses. The capacity and complexity of these malware groups are ever
growing particularly with technological advancement and the increasing awareness
of vulnerabilities by attackers [28].

The design of advanced evasion techniques by malware attackers has been driven
by improvements in malware detection. One of the foremost stealth tactics employed
to evade detection was encryption, which made the malware undetectable before de-
cryption. However, through string signature matching, the decryption module may
be detected as malware. An advancement on encrypted malware is oligomorphism in
which several randomly chosen decryption codes are used for each victim. A more
complex type of an oligomorphic malware uses polymorphism wherein code encryp-
tion is employed with the added capability of creating an unlimited number of novel
decryptors. Polymorphism is intended to continuously transform the decryption
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routine with each new instance and employs a mutation engine for the obfuscation
of code using techniques such as garbage code insertion and instruction replacement
to mutate the decryptor [6]. The main body of polymorphic malware code is consis-
tent across new infections, and although it is not detectable in the encrypted form, it
is detectable with signature matching once it is decrypted and loaded into memory,
which is a functional requirement of polymorphic malware [59].

An evolution of polymorphic malware that does not rely on a decryption routine is
metamorphic malware. This family of malware is regarded as a particularly danger-
ous malware group due to its ability to transform the main body of code at each new
infection while preserving the underlying malicious functionality. As such, detecting
metamorphic malware continues to pose a significant challenge due to its continuous
code mutation functionality [59]. A more in-depth study of the behavior and anomaly
analysis of metamorphic malware is deemed necessary to increase the possibility of
detection [39].

Conventional signature-based approaches to malware detection fail to detect new
mutants of malware and are evaded by these malware variants. More sophisticated
methods of detecting malware now include advancements, such as using heuristics
and machine learning, for detecting more and more dangerous malicious mutants.
This includes techniques such as generative adversarial network (GAN), which was
introduced as a probable solution to defeating metamorphic or zero-day malware at-
tacks by creating novel samples and signatures evolved from existing malware [37].
In addition, the convolutional GAN framework was employed in the generation of
adversarial examples that were able to evade third-party malware detectors compris-
ing of techniques for the transformation of program process execution [68]. These
techniques aimed at defecting complex malicious families also include techniques
such as behavior profiling and analysis of malware, built on semantic tactics, in order
to discover malicious patterns, providing awareness and insight into the functional
operations of malicious mutants, and improve the discovery of obfuscation attempts
made by such malware [63].

In this chapter, we lay the foundation for a practical understanding of the effec-
tiveness of GAN in the improvement of metamorphic malware detection based on
behavior profiling. The main research questions, for which this work will seek an-
swers, include:

• What are the key features of metamorphic malware that may enhance detection
using behavioral characteristics?

• How effective are GANs for enhancing the detection of metamorphic malware
using behavioral characteristics?

The rest of the chapter is structured as follows. In Section 2.2 of the chapter, we
provide a literature review. Section 2.3 describes our research methodology. The ex-
perimental design is given in Section 2.4. The results and discussion are provided in
Section 2.5. Section 2.6 concludes the chapter and suggests areas of future research.
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2.2 BACKGROUND
2.2.1 MACHINE LEARNING

Artificial intelligence (AI) is a subset of computer science aimed at developing tech-
nological advancements to enhance human intelligence and creating new intelligent
technologies that mimic human intelligence. AI has facilitated innovation in com-
puter vision, nature language processing, and robotics. Machine learning (ML) is a
subset of AI which optimizes the use of mathematical processes to perform statistical
analysis, classification, and prediction. ML is described as a “field of study that gives
computers the ability to learn without being explicitly programmed” by AI pioneer
Arthur Samuel [61].

The methodology adhered to in ML is performed in two stages, namely, a training
phase and a testing phase. The stages typically involve actions to identify features and
subset attributes from training data, algorithm selection, model training and evalua-
tion, and final model selection for data classification. In practice, the ML procedure
is performed by training, validation, and testing, and sample data are divided into
training, testing, and validation datasets. Normal patterns are defined in the training
stage using a training dataset, and the validation dataset is used to substantiate the
efficacy of the process used in the training stage. The test dataset is used to verify the
accuracy and overall efficiency of the model used [11].

ML algorithms may be categorized as deep or shallow learning and are fur-
ther classified as supervised, unsupervised, or reinforcement learning systems. Deep
learning involves more complexity and relies on interconnected networks to process
input data via several intermediate layers to generate an output. Deep learning mod-
els are based on artificial neural networks (ANN) and can perform feature selection
from input data to optimize performance and arbitrarily learn data. Vast amounts of
complex data can be learned by deep learning algorithms that have been used for
various purposes including malware analysis and threat identification [21]. Shallow
learning requires manual feature identification and extraction and is dependent upon
an understanding of the data being processed. Both approaches are further catego-
rized as supervised learning, which requires classification and labeling of the train-
ing dataset, and unsupervised learning, which does not rely on a classified dataset
to operate. Unsupervised learning is capable of independently identifying relevant
features and categorizing data with related attributes, whereas supervised algorithms
are commonly used for data classification based on feature correlation [3].

Shallow machine learning techniques for malware detection have been experi-
mented with in the past, such as support vector machine, Naive Bayes, and deci-
sion tree algorithms, using various features. However, these techniques are not op-
timized for complex malware detection. Deep learning techniques mitigate some of
the shortcomings of shallow learning due their enhanced feature learning capabil-
ities and have demonstrated superior performance against shallow learning meth-
ods in past researches using stacked autoencoders [23]. The features required by
machine learning classification algorithms are a key component of the training
datasets, which impact the overall accuracy of machine learning. The extraction
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of pertinent features from training data is intended to optimize the process of dif-
ferentiating between benign and malicious software. Feature extraction is challeng-
ing to achieve an optimal balance between speed, number of selected features, and
accuracy [19].

The rest of this section lists the frequently extracted features in research for mal-
ware detection using ML. Dynamic link libraries (DLLs) function calls obtain in-
formation associated with Microsoft Windows DLLs and API functions, which may
provide insight into the intended behavior of a program. This technique has been
used to determine the DLLs in use by a binary file, API functions referenced, and
number of API functions called by each DLL. Binary sequence extraction method
has been researched using hexadecimal code, n-gram sequences, and fixed length
byte values as features. Assembly sequences or opcode sequences have been used
to identify and understand malicious functions from disassembled binary files, us-
ing n-gram sequences for feature extraction. Portable executable (PE) header fields
contain structural information about binary files, which has been used for feature
extraction. Integer and Boolean values derived from the PE header fields serve as
feature options. Entropy signals are a measurement of randomness within data; high
entropy within data indicates that there is greater randomness and content of informa-
tion in a binary file, which may be represented as an entropy stream of code chunks
that are developed into features. Machine activity metrics of the number of running
processes, network activity, memory, and CPU usage have been used as features to
indicate malicious process behavior [35].

API graph matching and similarity features have also been researched to detect
malware based on the longest common subsequence algorithm that uses similarity
measurements. The study demonstrated a 98% detection rate and 0% false positive;
however, this study was limited to 75 malicious and 10 benign samples [17]. Graph-
ical representations of program execution path traversal, in the form of control flow
graphs, have been presented as a method for metamorphic malware detection. The
proposed method extracts the CFG from a disassembled PE file, which is used to
generate an API call graph and converted to a feature vector for processing. The pro-
posed method attained optimum results using a Random Forest classifier to achieve
97% accuracy rate [18].

Android system call sequences have been proposed as an enhanced approach to
malware detection and address the shortcomings encountered by traditional meth-
ods, which may be evaded as a result of obfuscation techniques. System calls are
used to request operating system kernel level services via the application layer or
user level processes. System calls may indicate a transfer from user mode to ker-
nel mode to facilitate sensitive operations, such as hardware resource access, device
security, network and memory access, inter-process communications, and read and
write activities. System calls are an effective mechanism for malware behavior pro-
filing as they are resilient against common evasion practices employed by modifying
control flow graphs, opcode sequences, and API calls to obfuscate existing malware.
Research conducted on the use of system calls for malware detection demonstrated
a 97% detection accuracy in comparison to previous studies [13].
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Feature selection techniques are an important step for removing redundant data,
enhancing the learning and testing timescales, as well as the overall accuracy of
ML for malware detection. Techniques frequently used for feature selection include
Chi-square, Fisher Score, Gain Ratio, Information Gain, and Uncertainty Symmet-
ric. The Fisher score technique demonstrated superior results for detecting unknown
malware in a study using the Random Forest classifier to detect opcode occurrences
[51]. Opcode based features require disassembly first and are therefore not optimized
for dynamic ML detection mechanisms. Others propose using sub-signature n-gram
term frequency extracted from binaries, using the Information Gain technique and
classified with Support Vector Machine, for metamorphic malware detection. The
authors claim a 99% detection accuracy rate and an improved performance compared
to commercial anti-virus products [30].

A survey of the efficacy of techniques leveraged by machine learning for classi-
fication and detection of malware illustrates the efficiencies of employing stochastic
modeling techniques for heuristic malware analysis methods and is recommended as
an effective method for detecting metamorphic malware variants. Research applying
Hidden Markov Models (HMMs) in the training and testing stages demonstrates the
effectiveness of malware prediction based on sequence observations, additionally
emphasizing the overall enhanced performance of models using system API calls
compared with Op-code sequences for detecting malicious activity [46].

Previous studies discuss a HMM-based detector identifying spawned malicious
software, which had effectively evaded antivirus software detection; however, addi-
tional research demonstrated metamorphic malware successfully evading detection
by HMM detectors and commercial antivirus products. ML-based classifiers have
similarly proven susceptible to adversarial attacks when purposely generated modifi-
cations are introduced into datasets, and researchers propose the inclusion of evasive
samples in the training dataset to enhance the overall classification performance [58].

2.2.2 DEEP LEARNING MALWARE DETECTION

Deep learning-based systems have been proposed as an enhancement to traditional
ML techniques, for detecting known and unknown malware. Deep learning archi-
tectures are deemed as an efficient and scalable method with improved feature en-
gineering capabilities. An experiment using deep learning demonstrated improved
results compared to a previous study using manual featuring engineering and the
Random Forest method. The study used opcode frequency for feature selection
and classification, and using autoencoders and deep neural networks, the outcome
was 99.21% accuracy and 0.19% false positive rate. Autoencoders are unsuper-
vised learning algorithms, and the datasets are not dependent on labels, thereby
mitigating the manual feature engineering requirement of supervised learning
methods [47].

Stacked autoencoders (SAE) have been used for feature extraction from behav-
ior graphs, constructed around deep learning models, to improve malware detection
rates compared to earlier studies. The behavior graphs consisted of security critical
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and related operations of API calls independent of their order. The intention of the
graph is to learn potential malicious actions from the combined API calls associ-
ated with operating system resources and gain detailed insight into behaviors. Every
unique API call behavior is transformed to a binary vector and serves as input to the
SAE model. The SAE consists of multiple layers of sparse autoencoders for feature
extraction and conversion, to compact and reduce the number of features for optimal
representation, and has been demonstrated to improve the accuracy rate for malware
detection [60].

Deep learning of call graphs has been proposed as an efficient method for meta-
morphic malware detection. The approach was inspired by results in computer vision
research and the benefits of deep learning image recognition and automatic feature
learning. The researchers in Ref. [66] state that obfuscation techniques applied by
metamorphic malware alter opcode sequences and byte n-grams; however, functions
and calling relationships remain constant after obfuscation, positing that call graphs
are more effective for metamorphic malware classification than opcodes and byte
values. The proposed method employed a deep convolutional neural network (CNN)
for feature learning and classification from malware call graph images, generated
from disassembled and PE malware datasets. The reported test accuracy for the PE
dataset was 96% and 94.35% for the disassembly dataset. Additionally, CNN’s have
demonstrated successful results in classifying malicious Android applications us-
ing local system calls and their co-occurrence as features. The study by Ref. [33]
leveraged NLP techniques to transform system calls, obtained from dynamic anal-
ysis, to numerical vectors as input to their learning model. A vocabulary consisting
of sequential system calls was used to represent malicious application behavior to
produce an accuracy score between 75% and 80%.

Deep learning frameworks have been used to successfully identify unknown mali-
cious Android variants using Linux system kernel calls obtained from dynamic anal-
ysis. Linux system calls have been proposed as a more robust method for malware
detection as opposed to Android framework API’s as they are independent of version
variations within the Android operating system and more resilient against evasion
techniques used in API substitution. The core component of Android is provided
by Linux, and hundreds of system calls support various operating system functions
that deliver services to the Android applications when requested. Dynamic analy-
sis performed by researchers using an Android emulator facilitated the execution of
malicious Android malware to trace and harvest the system calls requested by the
application. The extracted system calls were mapped to integer nodes to construct an
overall behavior graph used for classification [24].

Similarly, Linux kernel system calls have been extracted as features in other An-
droid malware detection research using a CNN for automated learning, resulting in a
reported accuracy rate of 93.29%. The system calls were correlated with their neigh-
boring system calls to form the basis of a matrix to represent the run time character-
istics, system call dependencies, and overall behavior of both benign and malicious
software. The matrix was then transformed into feature vectors to represent the col-
lected data as binary values to be used in the machine learning architecture [1].
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2.2.3 ADVERSARIAL MACHINE LEARNING

The security arms race between defenders and adversaries encompasses machine
learning techniques that have demonstrable vulnerabilities to adversarial attacks. Re-
search has demonstrated adversarial examples of meticulous interference with train-
ing, or test input data may sabotage the output accuracy and integrity of machine
learning models. Malicious manipulation of training data to modify or introduce
data points, aimed at interfering with feature selection and increasing the number
of sample misclassifications, is known as a poisoning attack. Evasion attacks are
malicious manipulation of test data intended to evade detection by instigating sam-
ple misclassification, while maintaining malicious functionality. The challenge to
learning algorithms is identifying feature vectors of malicious samples that are in-
distinguishable from benign samples, thereby increasing the likelihood of evading
detection by malware classifiers. The goal of a malware author in the arms race
is to evade detection by transforming malicious features to mimic benign samples.
The response of the defenders may be reactive or proactive. A reactive response
entails adapting behaviors based on learned responses from an adversary; this ap-
proach favors an attacker’s objectives and does not prevent unknown attacks. Proac-
tive approaches aim to identify weaknesses by simulating an attacker and implement-
ing countermeasures to potential attacks. This approach enhances defense systems
in machine learning and improves the detection capabilities of anomalous and novel
behavior [10].

Defending against premeditated efforts to bypass classification systems necessi-
tates a threat model designed around the adversary’s goals, knowledge, and capabil-
ities. Source-target misclassification is the objective of an adversary in malware eva-
sion, and the goal of the adversary is to cause misclassification of a malicious sample
as a benign program. According to the assumed intelligence that an adversary may
obtain about a defense model, attacks are typically categorized as either white-box
access or black-box access. White-box access implies an attacker is familiar with
the model mechanisms and associated constraints. Black-box access suggests an ad-
versary has no knowledge of a defense model and only has limited opportunities
to observe results. The success of an adversarial example is dependent on an at-
tackers capability to introduce imperceptible changes to data capable of deceiving a
classifier, such as modifying malware to appear benign while maintaining malicious
functionality [14].

Deep reinforcement learning has been used to generate metamorphic malware by
employing opcode obfuscation, which is capable of evading detection mechanisms
with a 67% success rate. A reinforcement learning environment was set up to emu-
late Markov decision processing to enhance learning through sequentially inserting
junk code instructions while maintaining the malicious functionality of the program.
Learning agents work together with the environment in a training process whereby
the agent modifies the instruction level feature vector by injecting randomly selected
opcodes into a malicious code sequence. The generated output acts as input into a
discriminator to determine if the feature vectors are benign or malicious. Multiple
learning agents may participate in the training process to generate malicious variants
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with variable levels of obfuscation originating from a single malicious sample. The
newly generated samples serve to enhance detection mechanisms to identify novel
or metamorphic variants of malicious software and improve malware normalization
capabilities [48].

Deep learning discriminative adversarial networks have been proposed as a solu-
tion for the detection and classification of obfuscated and non-obfuscated malware
by combining feature sets from Android malware in a deep learning design frame-
work. The proposed network negates obfuscation techniques by constructing a multi-
view representation of malware based on API calls, raw opcodes, and permissions
to learn to detect unusual and potential obfuscation methods used in malware. The
proposed implementation employs a CNN along with two discriminator networks
designed to ensure that obfuscation does not bias the learned features, one of the
networks learns to identify malware while the other network reverses the gradient
of obfuscation learning. The design considers malware detection and obfuscation as
two opposing tasks, and non-obfuscated training data are augmented with obfuscated
data to enhance the learning process. The proposed method demonstrated that com-
bining multiple features improves malware detection rates in comparison to single
feature detection rates [36].

2.2.4 GENERATIVE ADVERSARIAL NETWORKS

Deep neural networks have proven vulnerabilities to adversarial attacks demon-
strated by generative adversarial examples using obfuscation to successfully evade
detection by malware classifiers and cause high misclassification rates in both white-
box and black-box scenarios [40]. Additionally, recurrent neural networks (RNN)
have been used to generate adversarial examples to evade detection by introducing
inconsequential API’s to an existing sequence and using a substitute RNN for train-
ing in a black-box scenario [25].

Deep reinforcement learning has also been used in black-box attacks to generate
evasive malware. The attack was aimed at soliciting classification feedback from a
static PE classifier as either benign or malicious and required no knowledge of the
model structure or features [2]. The reinforcement model includes an agent which
interacts with the detection environment in a contest setting to learn which sequence
of PE header metadata changes are likely to evade detection. However, this technique
did not perform as well as other approaches to generating adversarial samples and
attempts at code obfuscation in a number of cases interfered with functionality.

Reinforcement learning attacks have also been performed against graph neural
networks for malware detection, using code obfuscation techniques and control flow
graphs as input. Several attack scenarios were explored based on injecting ineffec-
tive instructions into binaries without altering the original behavior, in the form of
semantic nop instructions [64]. The reinforcement model was deemed suitable for
attacks against graph neural networks targeting the node features and graph struc-
ture by inserting semantic nops into the control flow graphs in sequence. The meth-
ods investigated in the attack scenarios include training the learning agent to re-
peatedly select code blocks and dead instructions to modify the malicious input,
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manipulating graphs by inserting dead instructions into randomly selected blocks and
using a gradient-descent approach and a hill-climbing approach to evaluate and com-
pare each scenario for efficacy at detection evasion which varied between 45.58%
and 100%.

Besides, other initiatives employing generative adversarial network (GAN) algo-
rithms demonstrated successful results for evading black-box learning algorithms
using generated malware examples [26]. The method proposes transforming original
input samples into complex and flexible adversarial output examples utilizing a gen-
erative neural network. It was developed on top of a GAN that relies on a discrimina-
tive model to differentiate between generated and genuine samples and a generative
model that is trained to deceive the discriminative model to result in misclassification
of generated samples as genuine. The architecture contains feed-forward neural net-
works consisting of a generator and a substitute detector, which work together against
a black-box malware detector. The adversarial examples were generated for binary
features, given their propensity for accuracy in malware detection, and generation
occurs dynamically based on feedback from the black-box detector. The dynamism
of this method contrasts with static gradient methods typically used to generate ad-
versarial examples, and it can perform complex transformations along with efficient
retraining capabilities.

The generator in MalGAN serves to perform transformations of Windows API
feature vectors into diverse adversarial adaptations and introduce random noise to
malware by generating feature quantities to cause benign classification [29]. The
noise is a randomly selected binary number from the range [0,1] and is concatenated
with the malware feature vector to form an input vector. A multi-layer feed-forward
neural network receives the input vector and produces an output from the last layer
that uses a sigmoid activation function to restrict the range to [0,1]. The objective
of the substitute detector in MalGAN is to fit the black-box detector and learn the
malicious and benign classification principles that are used for training the generator.
Input, in the form of feature vectors, is processed through a multi-layer feed-forward
neural network for classification by the substitute detector that uses benign data and
adversarial examples from the generator as training data. MalGAN offers a flexible
approach for testing the efficacy of malware detection algorithms and enhancing
training data for detecting malicious code. However, maximizing the potential of
this method necessitates diverse feature quantities for detection learning and limiting
samples to a single malware, to facilitate improved performance and realistic attack
scenarios.

Moreover, GAN has also been recommended as a potential solution to zero-
day malware attacks by generating new samples and signatures evolved from
existing malware and expanding on previous research using PE header files for de-
tecting malware families [37]. The classification process improved on earlier re-
search with automated and enhanced feature extraction accuracy provided by long
short-term memory (LSTM) and a CNN. Byte code sequences from the File, MS
DOS and Optional Header fields provided for features and dependency identification
from the PE file. The generator in the proposed method used seven fully connected
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layers aimed at minimizing the objective function and generated adversarial exam-
ples resembling the original samples albeit with minor modifications. The discrim-
inator was trained to maximize the objective function and included four fully con-
nected layers. The generator and discriminator construction presents an alternative
approach to the MalGAN implementation. The classifier was trained with genuine
and adversarial examples to be able to detect novel malware and demonstrated an
improvement on the evaluation metrics of a comparative raw byte method.

Recent research proposed a convolutional GAN framework for generating adver-
sarial examples capable of evading third-party malware detectors by incorporating
methods to modify program process execution [67]. The proposed implementation
combined additional components with a GAN structure, namely, PE parser for ex-
tracting and transforming features into binary vectors, and PE editor to follow the
perturbation path from the generator and increase the evasive potential of adversarial
examples. Runtime system functions and DLLs were extracted from malware and
benign programs to construct a feature set of binary vectors that served as input to
the generator along with Gaussian noise. The generator utilized a transposed CNN
with four categories of layers to compose a unique representation of malware from
an explicit set of features aimed at evading detection. The use of a PE editor intro-
duced an additional layer of complexity via encryption. Output from the generator
was used by the PE editor to create an adversarial sample. This process is repeated
until a new generated adversarial sample manages to evade the detection. At this
juncture, the PE editor creates the optimized adversarial sample. Consequently, the
generator was enhanced with the feedback from the discriminator in this process and
the evaluation results demonstrate an average decrease of 44% in the detection rate
and an increase of 55% in the evasion rate.

Recent research has also attempted to approach the problem through the visual-
ization of malware. GANs have been applied to learn the visualized malware features
and to generate novel samples in response to the visualized features to enhance iden-
tification of structural correlations of the malware. Byte code sequences from mal-
ware binaries were used to form the vector, which is interpreted as grayscale images
when processed by the GAN [52]. Additionally, images constructed from malware
API call sequence n-grams and related term frequencies have been used in malware
GAN research to generate synthetic malware [8]. An improved Wasserstein GAN
was utilized to generate synthetic images that were decoded from visual representa-
tions to n-gram sequences and term frequencies to enhance behavior-based malware
classification.

2.2.5 RELATED WORK

Great effort to seek solutions for metamorphic malware detection is shown in the
recent literature [5,62]. In order to improve the positive results of GAN in cre-
ating malware mutants, researchers [65] have shown the possibility of generating
new malicious mutants using opcode obfuscation created with a deep convolutional
GAN (DCGAN), which was initially designed to create images. This included the
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generation of synthetic features for Android APK files that were able to go unde-
tected by detectors, using a modified DCGAN, together with an algorithm to enable
optimum adjustment of the opcode frequency, intended to maintain operational func-
tionality. Novel created APK files were repackaged by employing original features
along with other selected features, as well as optimally inserted opcodes, to generate
functional packages that were effective in going undetected by four classifiers and
VirusTotal. The novel APK files were thereafter employed for training existing de-
tectors to enhance their capability of discovering obfuscated mutants of malicious
software.

Furthermore, to tackle malware mutant imbalances in datasets as well as increase
overall sample population, and to serve as an utility for data augmentation, generative
models have been presented. Reference [15] indicates that the classification accuracy
of a malicious mutant is decreased by a small sample representation of the malicious
family. An improved classification accuracy of malicious groups was shown by their
study with a low representation within a dataset by the conversion of Android op-
codes to grayscale images. A DCGAN was employed in creating new samples with
results showing an increase in the F1 scores of an independent CNN classifier as
against previous scores prior to data augmentation.

A related research [32] intended to enhance diversity of dataset as well as classifi-
cation performance also used a DCGAN architecture with bytecode malware image
representations appearing as RGB images. This employed an 18-layer deep resid-
ual architecture based on CNN for classifying the synthetic samples to show a boost
in the classification accuracy of unseen data. Furthermore, DCGAN has also been
employed with behavior features derived from Android intents in order to improve
the defense mechanisms against latent malicious behavioral sequences [27]. These
intents comprise of operation descriptions and are employed in initiating send and
receive communication services. To generate behavior logs of both cleanware and
malware, dynamic analysis was used to serve as input to the DCGAN so as to dis-
cover anomalous behavior and malicious activity. The researchers postulate that the
fine-tuned pattern analysis and discovery capabilities of DCGAN result in better per-
formance in terms of accuracy in comparison to other machine learning methods.

The research presented in Ref. [27] used only benign samples, and this was done
for the fingerprinting of non-malicious behavioral activities and served as the input
source for the DCGAN to create new behaviors, which they presuppose may repre-
sent likely malicious patterns. The researchers carried out the study using dynamic
analysis; they, however, left out the image creation process in their discussion. Refer-
ence [32] used an existing malware image database for their research and conducted
classification using a deep residual network; however, deep classification networks
are designed for large-scale image recognition and require specific image dimen-
sions. Reference [15] used image data augmentation methodologies and double-layer
CNN based on the generative model and did not implement deep models for clas-
sification. The features used in this study represent the runtime system calls from
verifiable metamorphic malware to enhance detection rates of novel mutations. All
researchers employed the F1-score during evaluation. We present a summary of the
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Table 2.1
Related Work Summary Illustrating Features, Datasets, and Classification
Algorithms and Evaluation Metrics Employed

Source Features Dataset Classification Evaluation Metric

[15] Opcodes 20,000 data in AMD
4,000 Debrin

CNN Accuracy, precision, recall
and F1-score

[27] Intents Benign samples CNN, DCGAN,
LSTM

Accuracy, precision, false
positive rate and F1-score

[32] Bytecode 2,949 Malicious
samples

DRN Accuracy, precision, recall
and F1-score

[65] Opcodes 10,021 Benign,
10,035 Malicious
samples

CNN , KNN,
SVM and
Kaggle-RF

False negative rate, precision,
recall and F1-score

related work in Table 2.1. The features used in the study discussed in this chapter
represent the runtime system calls from verifiable metamorphic malware to enhance
detection rates of novel mutations.

2.3 METHODOLOGY
This study proposes to use a DCGAN to generate novel color images based on be-
havioral features dynamically extracted from a unique metamorphic malware dataset.
The primary aim of the experiments is to generate novel metamorphic Android mal-
ware features aimed at improving the identification and classification of potential
novel malicious variants. The process of malware feature generation is outlined
in this section and shown in Figure 2.1. It follows the life cycle of the evidence-
based experiments designed in accordance with the scientific method described in
Ref. [57].

2.3.1 DATASET

The dataset used in this research consists of both malicious [4] and benign samples
consisting of games and utility applications obtained from the F-Droid online repos-
itory [31]. The balance between the benign and malicious samples contributes to the
development of an unbiased classifier. The malicious class is comprised of novel
mutant samples generated from three different Android malware variants, namely,
Dougalek,1 DroidKungFu2 and GGTracker3.

2.3.2 DYNAMIC ANALYSIS

User interaction with the malicious software was simulated with the MonkeyRunner4

utility available in the Android Software Development Kit (SDK) to trigger random
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Figure 2.1 Metamorphic GAN system architecture.

events, such as keystrokes and screen activity, to initiate interaction with the mali-
cious software and enable execution [53]. The data required for the experiment in
this research were acquired from the system call traces of all the dataset Android
package kit (APK) samples that were installed on an Android virtual device (AVD)
within a Docker container hosted on the analysis VM using the Linux diagnostic
utility Strace.5

2.3.3 DATA PREPARATION

The system call trace files were sanitized to remove all data except for the system
calls in the order of occurrence, rendering a list of thousands of chronological system
calls for each sample. The behavioral characteristic for each sample is contained in
the Strace log file, which is subsequently transformed into a n-gram feature represen-
tation using term frequency and inverse document frequency (TFIDF) vectorization.
TFIDF is a numerical model frequently used to measure the statistical importance of
a word or sequence of words within a document. Word count occurrences are mea-
sured by term frequency within a document and are represented as a n-gram, which
is divided by the sum of unique n-gram term frequencies as a process of normaliza-
tion. Inverse document frequency (IDF) scales up rare n-gram occurrences within a
document and downscales n-grams that have a high occurrence rate and therefore a
lower significance [54]. The Strace log files represent a document, and the system
calls represent n-gram terms for the purpose of the experiments conducted.
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2.3.4 IMAGE GENERATION

Visualizing malware execution patterns as feature images of malicious behavior has
demonstrated high accuracy rates for detection and classification using deep learning
technology. This technique involves mapping malware features to pixel intensities,
which represents the malware behavior as an image. An image is generated from a
feature matrix and mapped to image color channels to create a fingerprint represent-
ing malware behavior [55]. The images created for the purpose of the experiment are
generated from the TFIDF 2-gram matrix to construct the 32×32 height and width
color images. An illustration of the conversion of system call n-grams to images is
shown in Figure 2.2.

2.3.5 ADVERSARIAL SAMPLES

The images created from the malware sample features in the dataset were used to
generate novel samples utilizing the DCGAN framework to generate new images
for each malicious family. DCGAN is an architecture class of the original GAN
framework that uses convolutional layers in the generator and discriminator models

Figure 2.2 n-gram features to image transformation.
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to learn reusable feature representations to produce novel output. The purpose of the
generator is to create fake images using a latent vector along with an original image
as input. The discriminator serves to classify an input image as real or fake in a
competitive configuration where both the models attempt to improve based on their
respective performance feedback [42].

2.3.6 CONVOLUTIONAL NEURAL NETWORK (CNN)

CNNs have demonstrated high accuracy and performance rates compared to other
models that employ feature extraction classification techniques. CNNs were initially
designed for computer vision tasks and take images as an input of n-dimensional
shape corresponding to the length, width, and channel of an image, and uniformity
in dataset sizes is required. The structure of a CNN includes an input layer, sev-
eral subsampling layers, and fully connected layers, which convert the n-dimension
features to satisfy the classification criteria [16].

CNNs are a biologically inspired architecture designed for classifying images into
predefined classes, and the original design is based on the layers and cells of the
visual cortex of the brain. The design comprises convolutional and pooling layers
that are stacked on top of each other. Images serve as input to a feedforward neural
network that processes information from input to output in one direction only being
processed through several fully connected layers. Image feature extraction and learn-
ing occurs at the convolutional layers where feature maps are formed from neurons
that are connected to neighboring neurons in the preceding layer through learned
weights.

A new feature map, calculated from the convolved input and learned weights, is
then processed through an activation function. The pooling layers serve to reduce
input distortions and are configurable as average or max pooling for transmitting the
input values to the next layer. Max pooling selects the largest value in a field while
average pooling calculates an average of all the input values. High-level reasoning
is performed to understand the feature representations extracted by the pooling and
convolutional layers, which collectively form fully connected layers [44].

2.4 EXPERIMENTAL DESIGN
The virtual machines (VMs) implemented for the purpose of the experiment were
hosted with Microsoft Hyper-V Manager in accordance with objectives of the
experiments. Hyper-V technology provides isolated virtual partitions with each VM
running dedicated hypervisor resources and own processes with restricted network-
ing functionality to protect the host system and prevent inter VM communication
[20]. Virtualization technology provided a dedicated protected environment that en-
abled interaction with malicious software within the boundaries of legal and ethical
responsibilities and contain any potential malicious activities. VMs were created to
perform the following functions:
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Table 2.2
Hardware and Software Specifications of the Experimental Environment

Role OS CPU RAM Networking

Host 64 bit Windows 10
Professional

Intel Core i7 16.0 GB Enabled

Analysis VM Ubuntu 18.04 LTS Intel Core i7 Dynamic Allocation Disabled
Machine learning VM Ubuntu 18.04 LTS Intel Core i7 Dynamic Allocation On demand

• Analysis VM: This is the machine used for analysis that hosts the Android
emulation software that collects malicious and benign artifacts by performing
dynamic analysis. It has no provision for internet connectivity and is discon-
nected from the virtual switch.

• Machine learning VM: This hosts the necessary software to perform data
preparation and machine learning model evaluation, internet connectivity pro-
vided as and when required.

A summary of the environment is outlined in Table 2.2.

2.4.1 EXPERIMENTAL SETUP

The experiments are structured around a binary classification problem with two
classes, namely, benign and malicious, for which the classification model delivers
discrete or continuous outputs. The discrete output predicts the class or label of an
unseen sample from the test set, and the continuous output estimates the probability
of the sample belonging to one class or the other. In order to assess the model’s pre-
diction ability to identify novel malicious samples, the dataset is split using stratified
k-fold cross-validation to ensure the subset proportions are reflective of the training
set proportions. This is to ensure that predictive features are selected from the train-
ing set as opposed to the complete dataset and are intended to mitigate against predic-
tive bias and overfitting. For the purpose of the experiments, 10-fold cross-validation
was employed as recommended for real-world datasets and unbiased error prediction
[7]. The dataset is structured into training, validation, and testing sets comprising the
images derived from the dataset and novel variants generated by the DCGAN. The
performance measurement metrics employed include accuracy, precision, recall, and
F-measure/F1-score [56].

Two experiments were carried out in this study to answer the second research
question, “How effective are generative neural networks for enhancing the detection
of metamorphic malware using behavioral characteristic?”. The first experiment was
aimed at assessing the evasive effectiveness of the generated samples using a CNN
classifier. The following steps were performed during the experiment:
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1. Load the data into the CNN
2. Data preparation and augmentation
3. Build the classification model with the training set
4. Perform validation on the validation set
5. Measure the training and validation accuracy
6. Perform binary classification to predict the class using unlabeled images for

each malicious family test set
7. Perform binary classification to predict the class using the unlabeled benign

samples test set
8. Calculate the classification metrics

The second experiment was aimed at assessing the effectiveness of the CNN clas-
sifier with a new dataset that includes the test set from the first experiment in the
training and validation sets and a newly generated batch of malicious samples for
each family produced by the DCGAN. The following steps were performed during
the experiment:

1. Load the data into the CNN
2. Data preparation and augmentation
3. Perform training on the training set
4. Perform validation on the validation set
5. Measure the training and validation accuracy
6. Perform binary classification to predict the class using unlabeled images for

each new malicious family test set
7. Calculate the classification metrics

2.4.2 BEHAVIOR FEATURE EXTRACTION

Dynamic analysis of the malicious APK dataset samples was achieved with a docker
container of the integrated Android malware analysis framework utility6, and specif-
ically the modified implementation of DroidBox7 included in the framework. The
analysis VM hosted the latest Docker engine and Andropytool container along with
Android SDK version 4.1.3. Droidbox is an Android application dynamic analysis
tool, and the customized version included with the docker image includes Strace,
within the Android emulator for system call capturing in addition to a higher number
of user actions simulated by MonkeyRunner for a duration of 300 seconds. Droid-
box hosts an armeabi-v7a emulator architecture running Android 4.1.1 for AVD de-
vices and enables real-time detailed analysis of application behavior. Strace facili-
tates monitoring and logging of all application system calls at the kernel level while
running from the zygote process, including launched services, circumvented permis-
sions, loaded DEX classes, and file read and write activity. The log file generated by
Strace includes all timestamped execution events for the dataset APK’s received as
input by the tool [34].
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The data samples were provided as input to the Andropytool docker container
with a limited argument to only launch Droidbox within the framework to conduct
dynamic analysis. The process includes executing Droidbox that launches an em-
ulator and installs each APK individually for a duration of 300 seconds of user-
simulated activity. Application behavioral activity is captured and output to CSV,
JSON, and text format log files. Once the capture is complete, the AVD device is
reverted, subsequent applications are installed, and the process is repeated. The per-
tinent log files for the purpose of the experiment were the Strace logs, which in-
clude all system calls with associated arguments and process identification number
(PID). The log files were processed to remove the arguments, PIDs, timestamps,
and blank lines between system calls, to render a list of system calls in sequen-
tial order reflecting the behavior of each benign and malicious sample from the
dataset.

The average runtime process is 6 minutes for each sample in the dataset, including
the emulator revert time and user activity stimulation process. The average number of
system calls for the entire dataset is 38,544 per sample. The Strace logs were stored
to disk under their variant name directory as per the dataset structure.

2.4.3 WORDS TO IMAGES

Each refined log file was processed as a document of words signifying the system call
sequence for every APK file in the dataset. A vocabulary of 2-grams is constructed
from the documents using the machine learning Python module Scikit learn [38].
Feature extraction of n-grams from the documents was achieved with the TFIDF
Vectorizer technique. The maximum features were capped at 1,024 to satisfy the de-
sired image dimensions (32×32= 1,024), and sublinear term frequency was used to
counteract the significance of highly repetitive system calls or deliberate obfuscation
attempts at inserting redundant calls [9].

A modified version of a Python malware feature extraction script to include the
aforementioned vectorizer parameters was executed in each sample set directory to
produce a 2-dimensional data structure of the system calls and associated frequency
of each sample [12]. The output for each malware family and benign set were saved
to disk in a csv matrix generated by the script. The rows of each matrix are a 1-
dimensional behavioral vector representation of the data samples and are converted
into a 2-dimensional image representation, where each TFIDF value is transformed
into an 8-bit RGB pixel value ranging between 0 and 255. As image uniformity in
shape is required by CNNs, all the experimental images were created in the same
size in preparation for being processed.

2.4.4 SYNTHETIC IMAGES

The image representations of the malware dataset are used as input to the DCGAN
in order to generate novel samples required for the experiment. The input images for
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the experiments are 3-by-32-by-32 where 3 denotes the number of channels for RGB
images. The objective function defined in Eq. (1.1) is used to optimize the DCGAN.

min
G

max
D

V (D,G) = Ex ∼ pdata(x)[logD(x)]

+Ez ∼ pz(z)[log(1−D(G(z)))] (2.1)

The generator (G) and discriminator (D) compete in a minimax contest with the value
function V (D,G). Ex∼pdata(x) signifies genuine data distribution, whereas Ez∼pz(z)
denotes fake data distribution z. The objective of the D is to maximize the probability
of correct classification between genuine and fake data, denoted by logD(x), while
G’s objective is to minimize the probability of accurate classification by D, indi-
cated by [log(1−D(G(z)))] [22]. The discriminator used in the DCGAN consists of
strided layers that apply 2-dimensional mathematical operations over an input signal
of several input planes to output a scalar probability of the input 3×32×32 for the
experiment images. The generator in the DCGAN includes several layers that apply
2-dimensional transposed mathematical operations on an input latent vector to output
a transformed 3×32×32 RGB image.

The discriminator is essentially a down sampling CNN, whereas the generator
is an up sampling CNN, and both make use of batch normalization functions that
enable the use of higher learning rates [43]. A Pytorch DCGAN8 was utilized to
generate the images for the experiment. A modified version of the generator was
employed to function with 32× 32 images. The malware dataset images served as
input to the DCGAN in separate cycles per variant to produce synthetic images for
each family. The objective of the generator is to convert latent space to images with
the same size as the input images. This is accomplished through the process of the
transposed convolutional layers, batch normalization, and activation functions, which
is then output through a tanh function to revert the image to the input data range.
The discriminator serves as a binary classification network that processes the images
through several convolutional layers, batch normalization, and activation functions
to determine a probability of the authenticity of the input image as real or fake.

The DCGAN framework was initialized to use the custom dataset folders and pro-
duce individual synthetic image outputs at the completion of each epoch. The train-
ing is performed in two stages. Stage one is designed to maximize the probability
of accurate classification by D, denoted as log(D(x))+ log(1−D(G(z))). Training
batches of genuine samples complete a forward pass through D to calculate the loss
denoted as log(D(x)) and a backward propagate the gradient of the loss function with
respect to the neural network’s weights. Then, the losses and gradient accumulations
for a batch of synthetic samples, produced by G, are calculated by completing a for-
ward pass through D, denoted as log(1−D(G(z))) and a backward pass, respectively.
Stage two is intended to maximize log(D(G(z))) by optimizing G’s steps based on
G’s stage one losses and backward propagate the gradient of the loss function with
respect to the neural network’s weights.
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Table 2.3
DCGAN Hyperparameters

Hyperparameters Values

Number of iterations 20
Learning rate 0.0002
Beta1 0.5
Random seed Yes
nz input vector 100
Batch size 1

DCGAN uses the binary cross entropy loss (BCELoss) function to enhance learn-
ing for D and G with two separate Adam optimizers for each network. The BCELoss
function used in the PyTorch DCGAN calculates the log components required for
both D and G and is defined in (2.2).

ℓ(x,y) = L = [l1, . . . , lN ]T , ln =−[yn.logxn

+(1− yn).log(1− xn)]
(2.2)

The component of the equation to calculate is specified by y during the training,
which is mutable and defines the labels. Training is complete when G has exhausted
all possibilities of generating new samples or when D can no longer differentiate
between genuine distributions and synthetic outputs from G. The average runtime
for the selected iterations was 6 minutes per malicious dataset variant. The hyper-
parameters configured for the DCGAN are consistent with the original research by
Ref. [43], with the exception of the number of iterations and batch size as illustrated
in Table 2.3.

Sixty synthetic image samples were generated with the DCGAN from source
images representing each malicious variant equally, and a sample is illustrated in
Figure 2.3.

2.4.5 IMAGE CLASSIFICATION

A CNN-based image classifier is employed to assess the evasive potential of the
newly generated images produced by the DCGAN. The CNN is trained using the
original and synthetic images. It aims for binary classification by estimating the prob-
ability of the generated test images being malicious or benign. Alternatively, multi-
class classification can be sought to further classify several different classes [49].

The implementation involves providing the images to the input layer which are
formulated for feature extraction by the convolutional layer through resizing. The
convolutional layer filters the images to discover and calculate features to perform
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Figure 2.3 Sample image from 60 synthetic image samples generated with the DCGAN
from source images representing each malicious variant equally.

feature mapping during testing. The extracted features are transferred to the pooling
layer that shrinks the image while maintaining the maximum relevant information
through max pooling. This information is passed to the activation layer that mathe-
matically stabilizes the learned values and passes them to the fully connected layer
that translates and categorizes the high-level filtered images to classes [50].

Comparable with the research by Ref. [15], this experiment is aimed at the gen-
erative capabilities of a DCGAN using malware features as opposed to image clas-
sification architectures, and therefore, the model implemented resembles a simple
convolutional network model. A Keras CNN image classification network was im-
plemented for the purpose of the experiment. Data augmentation was applied to safe-
guard against the model processing the same image twice and is intended to optimize
the use of the small dataset. Random image transformations counteract overfitting
and improve model generalization, and the dropout inhibits the exact patterns be-
ing viewed by a layer twice. The stack consists of three convolutional layers with a
ReLU activation function and max-pooling layers with two fully connected layers.
Feature maps are converted from 3-dimensional to 1-dimensional feature vectors by
the flatten function, and sigmoid and binary cross-entropy are implemented for bi-
nary classification.

The original sample dataset containing the images is structured into two classes
representing benign and malicious samples using 10-fold cross-validation to split the
dataset into train, validation, and test folders. A modified version of a Keras Jupyter
Notebook was implemented for the experiment and configured to load the data from
local folders within the ML VM to generate labels from batches of the images. The
data were prepared utilizing data augmentation and model generators to load and
process the data in batches from the subfolders and train the model. The validation
data are used to measure the training performance accuracy, and the test data contain
images previously unseen by the model which are used to predict the probability of
class membership, either malicious or benign. The CNN model hyper-parameters are
listed in Table 2.4.
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Table 2.4
CNN Hyperparameters

Hyperparameters Values

Image size 32
Epoch 20
Batch size 10
Test size 20
Input shape 32,32,3

The experiments were then conducted, and the results are analyzed in the subsec-
tions below to answer our research questions.

2.5 RESULTS AND DISCUSSION
This section discusses the detail of the experiments, and the results obtained to eval-
uate the efficacy of a generative network aimed at producing novel samples using
metamorphic malware features. DCGAN generator and discriminator networks learn
to improve based on updated learning parameters provided by the gradient descend
algorithm. The input to the discriminator is an image, and the training objective is
to increase the probability of accurate classification as authentic or an imitation,
thereby maximizing log(D(x)) + log(1−D(G(z))), where x represents the image,
and z represents the generator function mapped to the latent vector. In this case, D(x)
performs as a conventional binary classifier. The generator is trained to minimize
log(1−D(G(z))) aimed at producing improved imitation samples, and the loss is
calculated as log(D(G(z))). The discriminator loss is determined by the sum total of
all sample losses by classifying the generator output [41].

2.5.1 ASSESSING THE EVASIVE EFFECTIVENESS OF THE GENERATED
SAMPLES USING A CNN CLASSIFIER

The first experimental cycle (experiment 1) targeting the original dataset without
any synthetic images provides a baseline to measure the performance of the CNN.
The model correctly predicted all the benign samples with a 99.7% probability pre-
diction average across the samples. A single malicious sample was misclassified as
benign, while the remaining samples were correctly predicted as malicious with a
99.9% probability prediction average. Subsequent cycles involved replacing the orig-
inal malware in the test folder with synthetic samples from each family to conduct
individual classification rounds for each variant. The combined results for the syn-
thetic samples demonstrate a reduction in the overall prediction probability averages
for the synthetic malicious samples with 51% of the samples misclassified as benign.
This experiment demonstrated that synthetic samples produced by a deep generative
network are successful at evading detection.
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2.5.2 ASSESSING THE EFFECTIVENESS OF THE CNN CLASSIFIER
WITH A NOVEL DATASET INCLUDING A NEWLY GENERATED
BATCH OF MALICIOUS SAMPLES FOR EACH FAMILY PRODUCED
BY THE DCGAN

This stage was aimed at evaluating the efficacy of the CNN to detect novel samples
by creating a new dataset to include the test set from the first experiment in the
training and validation sets and a newly generated batch of malicious samples for
each family produced by the DCGAN for the test set. The combined results for this
experiment (experiment 2) demonstrate a 91% accuracy detection rate of the newly
generated malicious samples and an overall probability prediction average of 95%,
demonstrating an improvement on the results from experiment one. An interesting
anomaly was observed between the first experiment and the second experiment for
the DroidKungfu variant with over 50% misclassification in experiment one to 100%
correct classification in experiment two. This result was consistent in all the tests
conducted in experiment 2.

The results (experiment 2) indicate an overall improvement in comparison to ex-
periment 1, in particular the F measure, indicating the balance between recall and
precision performance with an increase of 0.31% toward the optimal value of ex-
periment one as listed in Table 2.5. Experiment 2 demonstrated that the inclusion
of synthetic samples in training datasets improves detection rates of novel malicious
samples. The experiment was executed for ten repeated cycles per family capturing
the highest evasive results, and the average timescale for each testing and validation
cycle was 30 seconds with an additional average of 5 seconds for each testing cycle
when conducted on the ML VM allocated with four virtual processors. The results
obtained from the experiments were used to evaluate the efficacy of a DCGAN for
producing novel synthetic malware behavior features and ultimately the effectiveness
for enhancing detection capabilities.

Table 2.5
Comparison of Experiment 1 and Experiment
2 Highlighting the Improved Performance
Utilizing Synthetic Samples in the Dataset

Performance Metrics Experiment 1 Experiment 2

Accuracy 0.73 0.95
Precision 0.97 0.98
Recall 0.48 0.92
F1-scores 0.64 0.95
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2.5.3 EVALUATION

The overall objectives of this research were to identify the essential features of meta-
morphic malware that may improve detection capabilities and evaluate the efficacy
of deep generative neural networks for enhancing the detection of metamorphic mal-
ware using the identified behavioral characteristics. To achieve these objectives, a
literature review was conducted to compile background information from a range of
sources on related research into metamorphic malware and machine learning tech-
niques for malware detection. Additionally, the background information gathering
served to identify appropriate tools and techniques for structuring the design of the
experiments performed in this research project. The literature review identified Linux
kernel level system calls as a reliable method for malware detection due to their inde-
pendence of Android operating system version variations and resilience against com-
mon evasion techniques. Deep convolutional generative adversarial networks were
also identified as an effective method of generating synthetic novel samples due to
the fine-tuned pattern analysis and identification capabilities compared to other mod-
els. The decision to utilize a DCGAN for this project resulted in the requirement to
convert the metamorphic malware features into images as input to the framework and
ultimately influenced the classification method for the experiments which is consis-
tent with methods utilized in other related work on this topic.

The research conducted by Ref. [32] demonstrated an overall 6% improvement in
F1 score using a DCGAN to augment baseline samples and a deep residual network
for classification. A deep classification network was evaluated during this project;
however, it was not deemed appropriate due the poor results during training and
evaluation due to low population of the research dataset. The dataset used in Ref.
[32] was approximately three times larger than the dataset used in this project, and
the generative samples were produced over thousands of epochs.

The research carried out by Ref. [65] was aimed at the evasiveness of genera-
tive produced samples measured with several different classifier models and did not
evaluate the results of retraining classification models including novel samples. The
dataset used in the study contained thousands of samples commonly used in research.

The study conducted by Ref. [15] demonstrated an improved F1 score between
5% and 20% across samples using augmented generative samples to measure the ef-
fects of using novel variants to improve detection rates using a simple CNN network
for classification results. The dataset used in the study contained thousands of sam-
ples from two commonly researched datasets. All the aforementioned studies focus
on static analysis features that are more susceptible to obfuscation attacks.

The dataset used in this research project was significantly smaller than related
studies. However, it is a true representation of metamorphic malware, which was the
focus of this work. The training and evaluation accuracy results of the classifier sug-
gest that overfitting may compromise the prediction reliability, despite efforts to mit-
igate against overfitting with data augmentation techniques and model parameters.
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The improved F1 scores produced in experiment 2 demonstrate the potential classifi-
cation performance improvement by augmenting the data with novel samples derived
from the DCGAN and metamorphic malware feature samples.

2.6 CONCLUSION

The experimental results of this project demonstrate the efficacy of machine learning
techniques for enhancing the detection capabilities of anomalous patterns. Metamor-
phic malware is stealthy by design and benefits from several obfuscation techniques
to evade detection. The experiment results correlate with related research utilizing
generative machine learning to enhance malware detection. However, there were no
studies discovered during the background information gathering, which focused on
verifiable metamorphic malware features and generative networks.

In addressing the research objective that was to implement and evaluate a genera-
tive neural network for enhancing metamorphic malware detection based on behav-
ior profiling, two research questions were posed. The first question was addressed
in the related work section and its focus was narrowed down to address metamor-
phic malware due to the evasive obfuscation techniques and was constricted further
for Android applications. The background research demonstrated successful results
employing techniques utilizing low-level features that were ultimately used in this
project. The second question was addressed in the experimental results, demonstrat-
ing the efficacy of a DCGAN using low-level features in improving detection ca-
pabilities, which is validated by the improvement in the F1 score between the two
experiments conducted.

Future work would benefit from utilizing a larger metamorphic malware dataset
to address the high training and validation accuracy results and the concern with
overfitting listed in the Results and Discussion section. The experiment could be ex-
panded to incorporate processes to attempt losslessly decoding the generated images
back to system call sequences and extended further by including multi-class classifi-
cation with a larger dataset and evaluating the effectiveness of identifying individual
malware families derived from a DCGAN.

Notes
1 Dougalek - https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/

androidosdougalek.a
2 Droidkungfu - https://www.f-secure.com/v-descs/trojan˙android˙droidkungfu˙c.shtml
3 GGtracker - https://www.f-secure.com/v-descs/trojan˙android˙ggtracker.shtml
4 Monkeyrunner - https://developer.android.com/studio/test/monkey
5 Strace - https://linux.die.net/man/1/strace
6 Andropytool - https://securityonline.info/andropytool-automated-extraction-of-static-and-

dynamic-features-from-android-applications/
7 Droidbox - https://www.honeynet.org/taxonomy/term/191
8 Pytorch DCGAN - https://www.pyimagesearch.com/2021/10/25/training-a-dcgan-in-

pytorch/

https://www.trendmicro.com
https://www.trendmicro.com
https://www.f-secure.com
https://www.f-secure.com
https://developer.android.com
https://linux.die.net
https://securityonline.info
https://securityonline.info
https://www.honeynet.org
https://www.pyimagesearch.com
https://www.pyimagesearch.com
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3.1 INTRODUCTION
The Internet of Things (IoT) is defined as the network of physical devices or “things”
that are embedded with electronics, software, different kinds of sensors, and actua-
tors and are connected to the internet via heterogeneous access networks to enable
“things” to exchange data with the manufacturer, operator, and/or other connected
devices [22,27]. Industrial IoT (IIoT) is a specialized IoT device that is designed as
part of industrial processes or products. Considering communication requirements,
IIoT can be classified into three categories: sensors that mainly transmit measure-
ments, actuators that mainly receive control commands, and sensors/actuators that
combine the capabilities to transmit and receive. IIoT industrial use cases are vast,
where they can perform sensing and actuation tasks with minimal human interven-
tion [16,22].

Enabled by innovative technologies such as 5G/6G wireless connectivity, artificial
intelligence, and machine learning, IoT will continue to find enormous opportunities
in applications across a wide range of industry verticals. IoT is being widely de-
ployed in industries such as healthcare, energy, transportation, and manufacturing,
to name a few [15,23,24,29]. These innovations are motivating a massive IoT adop-
tion trend that predicts the connectivity of 75.44 billion devices by 2025 [29]. The
increased utilization of IoT in critical and sensitive processes underscores the need
to establish strong controls to ensure trusted and reliable operation. From a commu-
nication perspective, large-scale deployments of IoT can be supported by massive
machine type communication (MTC) and machine-to-machine links; however, secu-
rity might not be trivial at such scales.
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Information security describes the technologies and practices used to support the
availability, integrity, and confidentiality of information where expected. Security
is typically accomplished through measures including prevention/protection, detec-
tion, and recovery. Prevention focuses on protecting information assets and services
against unauthorized access, disruption, and modification. Information confidential-
ity maps to information not being disclosed to unauthorized parties, and integrity
emphasizes maintaining accurate and complete data where unauthorized parties can-
not edit the data. Availability indicates that the information is available when needed
by the legitimate user or service.

Security is a critical element in the design and use of wireless networks due to
the easy access of the shared radio communication channel. This is further compli-
cated when considering IoT ecosystems, because of emerging complex cyber threats
and because of the limited resources on the IoT device level. The limited resources
often cause the implementation of traditional security controls, such as encryption
and key management, to be impractical [25,32]. This is particularly true for most
IoT devices that have low storage and processing powers with limited transmission
capabilities [17].

The same characteristics that make IoT appealing for a wide range of applica-
tions present a challenge for vendors and operators to secure IoT. An IoT ecosys-
tem can be exploited by an adversary through the IoT device hardware, communica-
tion channels & protocols, applications, and software. Hence, traditional security ap-
proaches on the application and network layers such as encryption and key manage-
ment schemes can be impractical considering the IoT’s light computational capabili-
ties [32]. Without proper security controls, the benefits of IoT ecosystems cannot be
realized for operational excellence, and significant damage could be inflected where
IoT devices are part of closed-loop critical industrial and operational processes [17].
In these environments, the security requirements of information availability and in-
tegrity are of utmost importance. Availability ensures that controllers have timely
and reliable access to IoT data when needed. However, information availability
can be negatively impacted by adversarial activities or operational issues including
cyberattacks, failures, and human errors.

Most IoT devices are manufactured with a type of wireless connectivity (cellular,
WiFi, LPWA, etc.). Interestingly, in a wireless communication environment, adver-
sarial actions that could degrade the communication channel are of serious concern,
specifically in critical industrial settings. For example, cyberattacks that target avail-
ability include denial of service (DoS) attacks and jamming attacks. Those attacks
prevent the timely exchange of legitimate IoT data with intended destinations and
negatively impact the operations of the controlled system. Recent attacks, such as
the Mirai attack, emphasize that resource-constrained IoT systems employing de-
vices with limited computational and storage capabilities are vulnerable to cyber
threats [2,5,17].
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3.2 CHAPTER CONTRIBUTIONS

This chapter acknowledges the IoT security challenges stemming from the resource
and capability limitations and adopts an alternative promising “physical-layer” se-
curity approach that takes into consideration such limited resources. We consider a
legitimate IoT device communicating with a receiver unit over a wireless channel.
The communication channel is modeled to be under an attack by an Adversary by
means of an intentional jamming interference, which affects the quality of the re-
ceived signal at the receiver unit, as is illustrated in Figure 3.1.

We employ a cross-layer physical-security approach by focusing on the quality of
service (QoS) of the received signal while meeting the IoT power constraints. Specif-
ically, in the proposed system setup, the IoT device would want to remain within a
“specific” acceptable outage limit while constraining the number of retransmissions.
Packet retransmissions might be needed in response to channel conditions and the
adversarial jamming interference.

In this setup, the IoT device cannot control the transmission strategy of the adver-
sary, but it can control its own strategy in order to conserve limited resources. Hence,
the IoT device evolves its own strategy without adding any additional coordination
overhead, which is particularly important in large-scale IoT deployments.

To the best of our knowledge, this approach to managing jamming interference
while meeting target information availability QoS has not been addressed before.
The main contributions of this chapter can be summarized as follows:

Figure 3.1 Problem setup showing an adversary jamming the communication of the legiti-
mate IoT device.
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• Develop a model for wireless heterogeneous environment with a setup of IoT
devices (wireless connectivity) competing for channel access in the presence
of adversarial IoT devices inducing jamming attacks.

• Develop channel-access strategies that meet QoS metrics and security objec-
tive (specifically, information availability) while considering the limited re-
sources of the IoT device.

• Demonstrate the benefits of the proposed approach using analytical and nu-
merical simulation results.

3.3 RELATED WORK

In this work, we combine several approaches such as physical-layer security, cog-
nitive spectrum sharing, and scheduling to establish practical and scalable security
strategies for IoT. Existing literature started by extending security approaches from
sensor networks to IoT for obvious similarities [4,14,15,18,19,25,30,31,33]. The
work of Ref. [25] provides a review of physical-layer security approaches to achieve
confidentiality over wireless channels.Physical-layer security utilizes the physics of
wave propagation and transceiver design to enable some aspects of secure commu-
nications over the wireless channel [4,22,25]. Hence, physical-layer security has a
promising potential to overcome the limitations of traditional security measures for
IoT applications.

Spectrum-sharing cognitive technologies are evolving as an enabler of IoT
connectivity in newer generations of wireless communication systems [6,7]. De-
vice scheduling has been typically addressed through centralized user scheduling
schemes [8,13]. However, the projected massive scale of IoT deployments and the
emerging different characteristics (e.g., energy efficiency requirements) are challeng-
ing to existing security approaches of sensor networks. For example, probabilistic
ciphering, compressive sensing, and approaches dependent on channel state informa-
tion (CSI) have been shown to not scale well, while some (e.g., compressive sensing)
have impractical high-computational complexity [22,25].

Recent works that investigate the security of IoT systems include [3,20,21,28].
The work in Ref. [3] investigates the architecture and techniques for IoT security
and privacy. Further, physical-layer security approaches to IoT information avail-
ability and confidentiality are considered in Refs. [9,10]; these works utilized em-
ploying other IoT devices in the system to safeguard against interference attacks or
eavesdroppers that target a specific IoT device.

3.4 IoT INFORMATION SECURITY

We adopt zero-determinant games to devise an uncoordinated transmission strategy
for an IoT device experiencing jamming interference. The strategy’s objective is to
achieve a target QoS metric (specifically, outage probability) given the limited re-
sources of the IoT device (manifested in reducing the average number of channel
transmissions).
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3.4.1 BACKGROUND

In this chapter, we focus on one legitimate user and one adversary user of the channel
to enable tractable treatment for the reader. However, we emphasis that the zero-
determinant games framework adopted here is easily extendable to multiple users,
which makes it appropriate to model large-scale IoT deployments.

A dynamical model is developed to capture the impact of uncoordinated transmis-
sions over the wireless channel, and then the impact of the IoT device’s transmission
strategy on signal quality is investigated. The dynamic interactions between the IoT
device and the adversary are modeled as a 2×2 iterated game; in each round of the
game, the IoT device reacts to the actions of the adversary in the previous round. In
the presence of an ongoing jamming interference created by the adversary, the pro-
posed game-theoretic transmission strategy allows the IoT device to achieve a target
outage probability as the information availability QoS metric without additional co-
ordination overhead.

An important feature of the proposed game-theoretic transmission strategy is that
players with longer memories of the game history have no advantage, in the long
term, over those with shorter memories. These iterated games are referred to as zero-
determinant strategies [11,12,26], and players can control their own long-term payoff
or that of their opponent through the structure of the game payoff matrix.

Thus, to be able to use this strategy, the IoT device does not need to know the
history of the adversary’s transmission; also, the IoT device can achieve, on the long
run, a target performance given the structure of the payoff matrix. Consequently,
the IoT device will be able to achieve the QoS target while transmitting over the
wireless channel without the overhead of coordinating with a scheduling authority
or other users of the channel.

3.4.2 SYSTEM MODEL

Consider a generic wireless communications setup as illustrated in Figure 3.2. The
system includes a legitimate user of the system (termed as LU) that uses the wireless
channel to transmit its data a receiver unit (denoted RU). The system includes an
adversary user (termed AU) that causes jamming interference on the LU’s signal.
Both LU and AU devices can concurrently transmit over the wireless channel.

Figure 3.2 System model displaying the channel power gain between the legitimate user
(AU) and the receiver unit (RU) and the channel power gain between the adversary user (AU)
and RU.
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Further, LU is assumed to have a transmission rate of RL and a transmission power
of PL that is constant over the time period of interest. Similarly, AU has a constant
transmission power of PA and a transmission rate of RA. The noise at the receiver
unit is assumed to be an additive white Gaussian noise with zero mean and variance
of σ2.

The channels between the two devices (LU, AU) and the receiver unit (RU) are
assumed to be independent and identically distributed (i.i.d.) block-fading channels
with Rayleigh distribution. The channel power gain between LU and RU is denoted
as gL, and the channel power gain between AU and RU is termed as gA. Let γL
denotes the signal-to-interference plus noise ratio (SINR) of LU’s signal at RU, and
let P{·} be the probability operator. Thus, the outage probability of LU’s transmis-
sion is P{log2 (1+ γL)≤ RL}.

Consider the case when there is no interference over the wireless channel
(i.e., PA = 0). The signal-to-noise ratio (SNR) of LU’s signal at RU is γL =
PLgl
σ2 . The outage probability of LU (denoted ζ0 in this case) is calculated using

ζ0 = P{log2 (1+
PLgl
σ2 )≤ RA}. Thus,

ζ0 = 1− exp(
−σ2

PL
(2RL −1)) (3.1)

for Rayleigh channel. Next, consider LU’s outage probability under the interference
caused by AU. In this case,

γL =
PLgL

PAgA +σ2 . (3.2)

The probability density function (PDF) of γL can be found as:

fγL(x) =
PL

PA
exp(−σ2

PL
x)

1
(x+ PL

PA
)2

(
σ2

PL
(x+

PL

PA
)+1

)
,x ≥ 0. (3.3)

The outage probability of LU during interference is calculated from ζL =
P{γL ≤ 2RL −1} as:

ζL = 1− 1−ζ0

1+ PA
PL
(2RL −1)

= 1−
exp(−σ2

PL
(2RL −1))

1+ PA
PL
(2RL −1)

. (3.4)

3.5 ZERO-DETERMINANT STRATEGIES
Consider a 2×2 iterated game with the one stage game of Table 3.1. The game has
two players: User 1 (row player) and User 2 (column player). At each round of the
game, a player chooses from two actions {1,2}. Let n1 and n2 denote the actions of
User 1 and User 2, respectively. A value of n1 = 1 or n1 = 2 refers to an active or



60 Internet of Things Security and Privacy

Table 3.1
Generic Payoff Matrix

XXXXXXXXUser 1
User 2 n2 = 1 (active) n2 = 2 (idle)

n1 = 1 (active) X1,1 X1,2

n1 = 2 (idle) X2,1 X2,2

idle User 1 in a given round of the game, respectively, and a similar interpretation
is used for n2 = 1 (active User 2) and n2 = 2 (idle User 2). The value X j,k, where
j,k ∈ {1,2}, denotes the game payoff if User 1 chooses n1 = j and User 2 chooses
n2 = k during the current play interval.

It is shown in Ref. [26] that in iterated games, where the same actions and the
same payoff matrices are repeated, for any strategy of the player with the longer
memory, the player with the shorter memory can achieve the same long-term out-
come if the opponent has played a shorter memory strategy. Thus, any history outside
what is shared between the two players can be disregarded. Consequently, the game
can be modeled as a Markov chain taken here to be a single memory step process.

In this regard, let n(t) = (n1,n2) denote the state of the game at round t and
S = {(1,1),(1,2),(2,1),(2,2)} be the state space of the game. Also let k = (k1,k2),
then

pk
1 = P(n1(t +1) = 1 | n(t) = k), ∀k ∈ S (3.5)

represents the probability that User 1 takes action 1 (n1 = 1) in round t +1 if in the
previous round User 1 took action k1 and User 2 took action k2. In a similar manner,
the probability that User 2 takes action 1 (n2 = 1) in round t +1 is represented as:

pk
2 = P(n2(t +1) = 1 | n(t) = k), ∀k ∈ S. (3.6)

The Markov chain has a unique stationary distribution πT = [π1,1,π1,2,π2,1,π2,2],
where π j,k, ∀ j,k ∈ {1,2}, refers to the stationary probability that User 1 takes action
j and User 2 takes action k. The average long-term outcome of the game of the row
player, denoted as u1, is given by Ref. [1] as:

u1 = π
T X̂ (3.7)

where X̂ = [X1,1,X1,2,X2,1,X2,2]
T . It is shown in Ref. [26] that if the pk

1’s are chosen
such that

a1X̂+b1 =
[
−1+ p1,1

1 ,−1+ p1,2
1 , p2,1

1 , p2,2
1

]T
(3.8)

where a1 and b1 are arbitrary nonzero real numbers, then the row player can fix the
value of u1 regardless of the actions of the column player (User 2) if and only if the
minimum value of one row in the payoff matrix of Table 3.1 exceeds the maximum
value of the other row. In such case, the row player (i.e., User 1) can fix the long-term
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average payoff u1 to any value in the range between the minimum and the maximum
values representing an advantage to User 1 over the other user [1].

To achieve a specific long-term average payoff u1, User 1 has to take an action in
the current interval according to the following likelihoods [1]:

p1,1
1 = 1+

(
1− X1,1

u1

)
b1

p1,2
1 = 1+

(
1− X1,2

u1

)
b1

p2,1
1 =

(
1− X2,1

u1

)
b1

p2,2
1 =

(
1− X2,2

u1

)
b1.

(3.9)

The range of valid values of b1 can be found as Ref. [1]:

0 < b1 ≤ min

 −1

1− X1,max
u1

,
1

1− X2,min
u1

. (3.10)

3.6 GAME-THEORETIC TRANSMISSION STRATEGY
The objective of the legitimate IoT device LU is to transmit its own data over the
shared wireless channel to the intended receiver unit RU while subject to the jam-
ming interference created by the adversary user AU. The information availability is
one objective the IoT device has to achieve, which can be quantified by using the
outage probability of LU’s signals as the QoS metric of interest. Because of the re-
lationship between outage probability and the corresponding SINR value, γL will be
used as the payoff of a transmission period.

Let X =
[
X j,k

]
denotes the payoff matrix of the legitimate IoT device LU during

transmission period ∆T . Then, the values of X are shown in Table 3.2, where the
term Active indicates the device is transmitting over the wireless channel during ∆T ,
and Idle means no transmission by the device.

3.6.1 TRANSMISSION PROBABILITY

Let User 1 in the zero-determinant game framework represent LU since it is the IoT
device of interest; also, let User 2 represent the adversary (AU). LU’s goal is to trans-

Table 3.2
Payoff Matrix of LU

PPPPPPLU
AU n2 = 1 (active) n2 = 2 (idle)

n1 = 1 (active) PLgL
PAgA+ σ2

PLgL
σ2

n1 = 2 (idle) 0 0



62 Internet of Things Security and Privacy

mit its data over the channel to RU while meeting an outage probability requirement
(as an information availability measure).

Because the outage probability of LU is P{log2 (1+ γL)≤ RL}, we use the value
of the SINR (γL) to represent the payoff at the end of the time interval ∆T for LU.
Thus, as shown in Table 3.2, the payoff matrix for LU is:

X =

[
PLgL

PAgA + σ2
PLgL
σ2

0 0

]
. (3.11)

Let X j,max and X j,min denote the maximum and minimum values of row j in the
payoff matrix of LU, respectively. Such values are found for each row as:

X1,min = X1,1 =
PLgL

PAgA+σ2

X1,max = X1,2 =
PLgL
σ2

X2,min = X2,1 = 0
X2,max = X2,2 = 0.

(3.12)

It is observed that X2,max < X1,min. Thus, the average long-term payoff attained by
LU (termed, uL), using the zero-determinant strategy, lies in [X2,2 , X1,1], or

uL ∈
[

0 ,
PLgL

PAgA +σ2

]
. (3.13)

Let the specific value of the average long-term payoff (in other words, SINR) attained
by LU be parameterized as:

uL = αL
PLgL

PAgA + σ2 (3.14)

where 0 < αL ≤ 1 is called the proactiveness factor of LU. A high value of αL
moves uL closer to X1,1, indicating that LU is more aggressive in utilizing the wireless
channel to achieve higher SINR values and thus lower outage probability. The case
of αL = 0 indicates the lack of transmission of LU, and it is not of practical interest
in this chapter.

Further, following the development in Ref. [1], the range of valid values of b1 in
Eqs. (3.8) and (3.9) is found as:

0 < b1 ≤ min
(

uL

X1,max −uL
,

uL

uL −X2,min

)
. (3.15)

This leads to 0 < b1 ≤ min
(

uL
X1,max−uL

,1
)

. Also, define:

b1,max =

{
1 αL ≥ PAgA

2σ2 + 1
2

αLσ2

PAgA+(1−αL)σ2 αL < PAgA
2σ2 + 1

2
. (3.16)

Then, the specific value of b1 can be expressed as:

b1 = βLb1,max (3.17)
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where 0 < βL ≤ 1 is called the reactiveness factor of LU. A high value of βL means
that LU is more probable to take an Active action if it was idle in the previous ∆T
interval, and it is less probable to transmit in the current interval if it did in the
previous one.

Let the status of the IoT device (LU) and the adversary (AU) in the previous time
interval ∆T be j and k, respectively, where j,k ∈ {1,2}, and let k be known to LU.
Then, p j,k

1 denotes the probability that LU is active in the current time interval given
its knowledge that n1 = j and n2 = k in the previous transmission interval.

Using the results of Eqs. (3.9) and (3.14), the probabilities of LU transmitting
over the wireless channel are:

p1,1
1 = 1+ uL−X1,1

uL
b1

= 1− 1−αL
αL

b1

p1,2
1 = 1+ uL−X1,2

uL
b1

= p1,1
1 − PAgA

αLσ2 b1

p2,1
1 =

uL−X2,1
uL

b1

= b1

p2,2
1 =

uL−X2,2
uL

b1

= b1 .

(3.18)

Consider the case of αL = 1 and a jamming interference higher than the noise power
(i.e., PAgA > σ2), then Eq. (3.18) reduces into:

p1,1
1 = 1

p1,2
1 = 1−βL

p2,1
1 = p2,2

1 = σ2

PAgA
βL < βL .

(3.19)

Similarly, when the jamming interference power is lower than that of the noise,
Eq. (3.18) is simplified to:

p1,1
1 = 1

p1,2
1 = 1− PAgA

σ2 βL > 1−βL

p2,1
1 = p2,2

1 = βL .

(3.20)

3.6.2 TRANSMISSION STRATEGY

Let M denote the state transition matrix of the Markov chain. Thus,

M =


p1,1

1 p1,1
2 p1,1

1 (1−p1,1
2 ) (1−p1,1

1 )p1,1
2 (1−p1,1

1 )(1−p1,1
2 )

p1,2
1 p2,1

2 p1,2
1 (1−p2,1

2 ) (1−p1,2
1 )p2,1

2 (1−p1,2
1 )(1−p2,1

2 )

p2,1
1 p1,2

2 p2,1
1 (1−p1,2

2 ) (1−p2,1
1 )p1,2

2 (1−p2,1
1 )(1−p1,2

2 )

p2,2
1 p2,2

2 p2,2
1 (1−p2,2

2 ) (1−p2,2
1 )p2,2

2 (1−p2,2
1 )(1−p2,2

2 )

 (3.21)
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where the p1’s are defined in Eq. (3.18) and the p2’s represent the adversary’s trans-
mission strategy (which is not necessarily known to the IoT device). Following
Eq. (3.7), π j,k, ∀ j,k ∈ {1,2}, denotes the stationary probability that LU takes action
j and AU takes action k. The stationary distribution π is calculated as Refs. [1,26]

π
T = [π1,1,π1,2,π2,1,π2,2] = π

T M . (3.22)

Thus, π can be obtained using a normalized version of the left eigenvector of M with
a corresponding eigenvalue of 1.

The stationary transmission probability of LU is π1,1 +π1,2, and the mean long-
term transmission power of LU is then calculated using:

PL = (π1,1 +π1,2)PL . (3.23)

Since LU is resource constrained, let PL ≤ P1,max. Further, the mean long-term
bandwidth-normalized channel capacity achieved by LU (CL) is found as:

CL =
π1,1 log2 (1+

PLgL
PAgA+σ2 )+π1,2 log2 (1+

PLgL
σ2 )

π1,1 +π1,2
. (3.24)

Similarly, the average long-term outage probability of LU that results from applying
the game-theoretic transmission strategy is found as:

ζL =
π1,1ζL +π1,2ζ0

π1,1 +π1,2
(3.25)

where ζ0 and ζL are defined in Eqs. (3.1) and (3.4), respectively.
The IoT device’s strategy is to achieve one objective of information security

through guaranteeing a level of information availability; this goal is accomplished by
limiting the outage probability to some threshold. Through the use of a specific value
of αL, LU can, on the long term, achieve a target SINR value, which is translated into
a target outage probability. Further, the IoT device conserves its transmission power
as it does not have to transmit all the time in order to achieve this QoS measure by
following the results in Eq. (3.18).

Since the IoT device’s channel access depends on the adversary strategy, the IoT
device can utilize the value of βL from Eq. (3.17) to select the transmission proba-
bilities and eventually the stationary Active probability of Eq. (3.22). As a summary,
the IoT device:

• selects the value of αL to guarantee long-term performance (uL and ζL),
• selects the value of βL to meet resource-usage constraint (PL ≤ P1,max).

Algorithm 1 is a depiction of the zero-determinant strategy that LU will follow to
transmit over the wireless channel while maintaining a long-term average payoff
(uL) that meets its QoS requirement regardless of the interference activity caused by
AU.
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Algorithm 1 Zero-Determinant Transmission Strategy
Determine: ζL from Eq. (3.25) to meet QoS requirement.
Collect: PL, RL, gL, σ2, PA, gA.
Calculate: X from Table 3.2.
Calculate: uL from Eq. (3.14).
Determine: αL and βL.
Calculate: p1 from Eq. (3.18) for Active, Idle probabilities.
Initialize: j = 2, to denote idle status of LU in the previous ∆T .
while TRUE do

Assign: k ∈ {1,2} depending on the status of AU in the previous ∆T .
Determine: p j,k

1 .
Generate: random number p.
if p j,k

1 ≥ p then
Access: LU transmits data with PL over cognitive channel.
Update: j = 1.

else
Idle: LU does not transmit.
Update: j = 2.

end if
Find: Active/Idle status of AU in the current ∆T .
if LU has no more data to transmit then

Break Loop.
end if

end while

3.7 EXTENSION TO MULTIPLE IoT USERS
The analysis presented for two players is next extended a repeated game with mul-
tiple players. This is necessary to examine the scalability and generality of the pre-
sented model.

3.7.1 ZERO-DETERMINANT STRATEGIES

Let {1, . . . ,N} be the index of the game players where N ≥ 2 is the number of
players. Let n(t) = [n1(t), . . . ,nN(t)] denote the state of the game at round t, where
ni(t) ∈ {1,2} describes the Active or Idle binary actions ∀t, i ∈ {1, . . . ,N}. A multi-
dimensional Markov chain can be used to describe the process {n(t) : t = 0,1, . . .},
and the state transition matrix, M, can be presented using a 2N ×2N matrix.

Similar to the 2-player game, a player i in an N-player game takes a specific
action in a given round with probability that depends on the state of the game in the
previous round. Let pk

i be the probability that player i,∀i = {1, . . . ,N}, takes action
1 in a given round if the game was in state k in the previous round.

Further, let Xk
i be the payoff of player i if the state of the game at the previ-

ous round is k. Also, for k ∈ {1,2}, define Xk
i,min = min(Xk

i : ni = k) and Xk
i,max =

max(Xk
i : ni = k) as the minimum and maximum payoffs of player i when taking

action k, respectively.
Regardless of the actions of the other players in the game, player i can control its

long-term average payoff if ki,max,ki,min ∈ {1,2} exist such that Xkmax
i,max ≤ Xkmin

i,min [1].
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If this is the case, then the long-term payoff of player i, termed ui, can be any value
in the interval [Xkmax

i,max,X
kmin
i,min], and this long-term payoff can be achieved using the

strategy of:

pk
i = 1+

bi

ui
(ui −Xk

i ) (3.26)

as the probability of choosing action 1 when the state of the game is k where bi
depends on the value of ki,max [1].

3.7.2 GENERALIZED TRANSMISSION STRATEGY

Given the N IoT in the communication system and for User 1 being the legitimate
user LU, User 1 takes actions whether to transmit over the wireless channel follow-
ing the zero-determinant strategy described above. In order to meet the QoS require-
ments, User 1 conducts a zero-determinant transmission strategy as follows:

• Calculate the N ×N payoff matrix of LU
• Verify if Xkmax

1,max ≤ Xkmin
1,min

• Define the long-term target of LU’s outage probability in the range
[Xkmax

1,max,X
kmin
1,min] as:

uL = Xkmax
1,max +αL

(
Xkmin

1,min −Xkmax
1,max

)
(3.27)

• Select the value of b1 that meets the constraints of k1,max
• For each transmission interval ∆T :

– Determine the previous ∆T ’s transmission state, k
– Determine the previous ∆T ’s game payoff of User 1, Xk

1
– Transmit over the wireless channel with probability

pk
1 = 1+

b1

uL

(
uL −Xk

1

)
. (3.28)

As evident from the above description, the N-user case is a natural extension of the
2-player case detailed in Algorithm 1.

3.8 NUMERICAL RESULTS
In this section, we numerically illustrate the proposed transmission strategy.

3.8.1 MODEL DYNAMICS

Consider the case of PL = PA = 10σ2 and gL = gA = 1. Let αL = 1 to signify an ag-
gressive LU. Figure 3.3 displays the active probabilities for LU, defined in Eqs. (3.9)
and (3.18) for the proposed transmission strategy.

Figure 3.3 illustrates the relationship between the transmission probabilities of
LU versus the reactiveness factor. The numerical results of Figure 3.3 align with the
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Figure 3.3 LU’s Active probabilities versus reactiveness factor (βL).

formulation deduced in Eq. (3.19), where increasing βL leads to decreasing values of
p1,2

1 , increasing those of p2,1
1 , p2,2

1 , and no effect on p1,1
1 .

Further, Figure 3.4 illustrates the stationary transmission probabilities of the IoT
device for different values of βL and transmission probabilities of the adversary (p2).
Equations (3.22) and (3.23) emphasize that the stationary transmission probabilities
are the first two elements of the normalized eigenvector of the matrix M defined in

Figure 3.4 LU’s stationary transmission probabilities (π1,1+π1,2) versus reactiveness factor
(βL) and adversary transmission probability (p2).
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Eq. (3.21). Given the values of PL,PA,σ
2,gL,gA,αL as assigned in the previous case,

π1,1 + π1,2 = 1
2 as shown in this figure. This translates into a 50% chance, on the

long term, of the IoT device accessing the channel and transmitting its signal; thus,
the device is conserving its resources half of the time while still achieving the target
level of information availability at the receiver unit.

3.8.2 SIMULATED USE CASES

Next, we simulate a communication environment with PL
PA

= 5 dB, PL
σ2 = 10 dB, and

RL = 1 bit/s/Hz. In this simulation, AU (i.e., the adversary) randomly transmits over
the cognitive channel with probability of p2, while LU adopts the zero-determinant
transmission strategy described in Eq. (3.18) with αL = 1,βL = 0.5. We consider
four values of adversary transmission probability (p2 = 10%,40%,70%,90%) for
Figures 3.5–3.7. We demonstrate the LU’s stationary transmission probability (π1,1+
π1,2), long-term average SINR (uL), and long-term average of channel capacity (CL)
in Figures 3.5–3.7, respectively.

The figures demonstrate that the stationary transmission probability increases
with increasing the adversary’s transmission probability (p2); however, the IoT de-
vice does not match the increase in p2, which provides an advantage for using the
proposed zero-determinant transmission strategy.

It is also observed that the long-term average payoff (i.e., uL) is almost the same in
Figure 3.6 regardless of the adversary’s strategy. This aligns with the promise of the
zero-determinant transmission strategy in achieving the same payoff regardless of the
actions of the other users in the system. This finding supports the IoT device’s goal to
limit the channel outage to a threshold and thus preserve the information availability
objective. Similarly, LU achieves stable long-term outage probability and channel
capacity with a wide range of aggressive interference activity by the adversary user.

Finally, the impact of number of adversary users on LU’s performance metrics is
shown in Figure 3.8. It is observed here that increasing the number of adversary users
gracefully deteriorates the performance metrics of the legitimate user even though the
channel access is uncoordinated.

3.9 DISCUSSIONS
It is important to discuss how the proposed transmission strategy fits applicable sce-
narios and understand the benefits and constraints of this strategy versus an active
strategy.

3.9.1 ABOUT THE GAME-THEORETIC APPROACH

Recall that the average long-term payoff attained by LU using the zero-determinant
strategy lies in [X2,2 , X1,1]. It is to be noted that if the IoT of interest (i.e., LU) chooses
to act all the time regardless of the actions of the adversary, the average long-term
payoff will be in the range [X1,1 , X1,2]. This provides LU with a better payoff than
the average long-term payoff attained by using the game-theoretic approach.
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Figure 3.5 The stationary transmission probability of the legitimate user for different val-
ues of the adversary’s transmission probability (p2). (a) Stationary transmission probability
when p2 = 10%. (b) Stationary transmission probability p2 = 40%. (c) Stationary transmis-
sion probability p2 = 70%. (d) Stationary transmission probability p2 = 90%.
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Figure 3.6 Long-term average of SNR of the legitimate user for different values of the ad-
versary’s transmission probability (p2). (a) Long-term average of the legitimate user’s SNR
when p2 = 10%. (b) Long-term average of the legitimate user’s SNR when p2 = 40%. (c)
Long-term average of the legitimate user’s SNR when p2 = 70%. (d) Long-term average of
the legitimate user’s SNR when p2 = 90%.
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Figure 3.7 Long-term average of channel capacity of the legitimate user for different values
of the adversary’s transmission probability (p2). (a) Average channel capacity of LU when
p2 = 10%. (b) Average channel capacity of LU when p2 = 40%. (c) Average channel capacity
of LU when p2 = 70%. (d) Average channel capacity of LU when p2 = 90%.
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Figure 3.8 Impact of changing the number of adversary users on the performance metrics
of the legitimate user of the system (LU). (a) Active probability of the legitimate user versus
number of adversary users. (b) Impact of varying the number of adversary users on the average
SNR value of the legitimate user. (c) Average outage probability of the legitimate user as a
function of the number of adversary users. (d) Impact of number of adversary users on the
average channel capacity of the legitimate user.
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However, the game-theoretic control approach gives the LU a guarantee of meet-
ing its QoS requirement while meeting constraints on the data availability or the
cost of using the cognitive channel. This is illustrated by how the proposed model
incorporates the limited sampling rate of IoT sensor readings as leveraged by LU.
The analysis does not assume the availability of a continuous stream of data, and
the bound on available cognitive resources or cost is articulated as the process of
selective cognitive channel transmission.

An advantage of the proposed game-theoretic treatment is that the IoT device of
interest can choose to be an active user of the wireless channel or idle to conserve re-
sources. The legitimate user of the channel is not required to know the entire history
of the adversary user in order to apply the transmission strategy effectively. Fur-
ther, LU is assumed to take action based on only local information, specifically the
transmission state of the opponent in the previous time interval, during the cognitive
transmission.

3.9.2 CONCLUSIONS

This chapter presents a game-theoretic approach for physical-layer security in large-
scale IoT environments. We present an uncoordinated transmission strategy for IoT
devices under jamming interference to meet information availability objectives while
preserving limited transmission resources.

Utilizing a zero-determinant strategy, the limited-resource IoT devices are not
required to know the transmission history of the adversary in order to apply their
own transmission strategy; the strategy only requires knowledge of the most re-
cent transmission actions of the adversary, which enables a decentralized schedul-
ing scheme and reduces the coordination overhead for the IoT devices in large-scale
deployments. Numerical results demonstrate the benefits of the proposed approach
where the IoT devices can achieve their target information availability over time
when adopting this transmission strategy.
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4.1 INTRODUCTION
The Internet of Things (IoT) is being touted as the next big technological trend by
both academic researchers and industry players. The IoT refers to the connection
of ‘things’ in the real world via the internet so that these ‘things’ can communicate
with each other as well as other internet services. Thus, IoT enables the connection
of the physical world with the cyber world, allowing remote monitoring and control
of physical objects from the cyber world [15,19].

The IoT is increasingly being used in different applications ranging from pre-
cision agriculture to critical national infrastructure by deploying many resource-
constrained devices in often unmanned and untrusted environments [41]. Such de-
vices are becoming prevalent due to the ability to integrate the data from these
devices into applications leading to significant benefits such as in advanced man-
ufacturing, smart homes, and smart infrastructures [7]. In addition, the integration
of physical actuators controlling the real world enables IoT applications to control
smart environments. In general, smart environments are dynamic in that new de-
vices are added and old devices are removed when they become obsolete or break
down or are moved from one location to another. Also, there is usually a corre-
sponding digital representation of these devices, which needs to be synchronised
with the physical devices for reliable monitoring. For this to occur, devices and ac-
tuators need to be registered and connected/bound to IoT middleware, so that data
can be extracted from these devices and processed by the IoT applications, as well
as to receive control commands from IoT applications. This process is referred to
as the provisioning of IoT devices [1,29]. IoT middleware is a software/script/API
or software glue that interfaces IoT device components and system applications and
enables communication between them. It helps to resolve the issues of physical-layer
communications, application service requirements, and diversity/heterogeneity in
communications [4].
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The drawback of the device onboarding process is that it may cause substantial
risk to the IoT network infrastructure. During onboarding, a device exchanges its
capabilities (e.g., cipher-suite and handshake protocol) with the connecting network
infrastructure using a hub or a gateway or a network controller. Often, default cre-
dentials are hard coded and exchanged during communications. An adversary can
intercept and weaponise these communications for attacking the IoT infrastructure
or the devices. For instance, in a smart agricultural farm, monitoring devices can be
de-authenticated due to IEEE 802.11 vulnerabilities [37]. Furthermore, the resource-
constrained nature of the IoT devices makes them susceptible to distributed denial
of service (DDoS) attacks (e.g., continuous and multi-threaded device capability re-
quests consuming the device buffer and processing resources, putting the device into
a stalled state). In some cases, an adversary can launch severe attacks by compro-
mising vulnerabilities/flaws in the network infrastructure and devices.

An advanced persistent threat (APT) launched against industrial IoT infrastruc-
ture is a classic example of such an attack [39]. Such attacks can be hard to detect
due to the lack of attack signatures and poor security posture of the low budget smart
infrastructures. Moreover, the devices that are positioned in remote locations can be
compromised (physically) during runtime. For instance, consider a weather sensor-
grid monitoring changes in the coastal power plants. An adversary can compromise
the sensor grid and send fake weather warnings to the power plants. Hence, there
can be a need for real-time monitoring for smart devices and sensors. The infected
devices can also act as bots sending malicious packets and communication requests
flooding the network infrastructure [2]. In addition, due to the resource-constrained
nature of IoT devices, an attacker can target IoT devices easily by sending forged
requests, intercepting and illegally manipulating valuable sensor data in transit, cap-
turing a physical device, and transforming it into a zombie to launch attacks on other
systems within the network infrastructure. Denial of service (DoS) and energy de-
pletion attacks are the most common IoT attacks [8,32]. Often, it is not possible to
implement security on these devices using traditional defence mechanisms as they
are located in open environments, and they would incur extra computational load on
small IoT devices. Hence, a secure IoT network infrastructure with secure device
provision is a requirement.

Secure provisioning of IoT devices enables the digital representation of the de-
vices to be synchronised with the physical devices and is a key design issue in the
development of smart IoT-based environments, as security risks to the digital rep-
resentations can lead to harmful impacts on the physical environment [22]. Also, a
secure programmable IoT network infrastructure is necessary for future networks.
Therefore, a secure smart IoT environment requires secure provision and automated
IoT devices’ onboarding. Furthermore, the secure IoT device provisioning and man-
agement require security policies and mechanisms to control and specify the mali-
cious or suspicious device activities within the smart network infrastructure.

In recent times, elliptic curve cryptography (ECC)-based device authentication
and provisioning protocols are becoming popular [22,44,46]. In some cases, proto-
cols are modified to suit the environment and device heterogeneity [46]. However,
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traditional authentication and authorisation mechanisms fail to locate the malformed
devices with dormant malware. Also, after authenticated provisioning, malicious ac-
tivities of such devices still remain a major concern. Thus, we need mechanisms not
only for secure provisioning but also for controlling the malicious behaviour follow-
ing device provisioning. Our consolidated IoT security architecture can also ensure
the security of IoT network infrastructure assets.

In this chapter, we describe our approach to secure provisioning/monitoring and
policy-aware secure management of IoT devices. We propose a consolidated secu-
rity architecture, secure device provisioning, and secure IoT network environment
management. The proposed security modules and services can be used to deploy
IoT provisioning and management using cloud infrastructure. Our approach has the
following distinct features, making it suitable for different practical applications.

Our architecture presents a policy-driven approach to secure device provisioning
and secure IoT network infrastructure management. Firstly, it specifies pre- and post-
condition policies that relate to the attributes and state of devices, which are used to
enforce specific security constraints while provisioning devices. They are also used
in extracting and providing sensor data to IoT applications and receiving control
commands from them. This also enables us to specify what type of scripts can run on
a device as well as the authorised communications that a device can have. Secondly,
our architecture incorporates the notion of digital twin synchronising with the phys-
ical device, which is used to monitor and manage the security state and health of the
devices using cloud-based applications. Thirdly, the proposed security architecture
offers fine granular policies to manage the flow communication of the IoT network
infrastructure. Finally, our security architecture can ensure on-demand security ser-
vices such as confidentiality to the device flows.

To demonstrate the efficacy of the proposed security architecture, we present a
smart agricultural farm infrastructure scenario. In principle, the proposed approach
applies to the deployment and management of IoT devices and associated network
infrastructure in various applications such as smart homes, healthcare environments,
and industrial IoT environments.

We have structured the chapter into the following sections. Section 4.2 discusses
relevant related works and compares them with our approach and security architec-
ture. Section 4.3 introduces fundamentals and benefits of policy-based network man-
agement. Section 4.4 presents an IoT network scenario and its associated challenges.
This section also explains the device ontology, which describes the attributes, prop-
erties, and binding information associated with the sensor and actuator components
of a device. Section 4.5 describes our policy-driven security architecture approach.
This section presents two major modules and associated components of the security
architecture. This section outlines the pre- and post-conditions associated with the
secure device provisioning process. Also, it introduces fine granular policies for IoT
network infrastructure management. Section 4.6 describes the prototype implemen-
tation and discusses how it counteracts the different attack scenarios. It also presents
performance evaluation, security analysis, and comparison. Section 4.7 presents an
open discussion on this work and some possible future extensions of this work. Fi-
nally, Section 4.8 concludes this chapter
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4.2 RELATED WORK
We have classified the related works into two sections: first, we will discuss auto-
matic device provisioning architectures and then about security services associated
with the provisioning mechanism.

4.2.1 POLICIES AND SDN

In RFC 1102, Clark introduced policy-based routing for autonomous domains [11],
which proposed a simple policy syntax for interdomain communications. We have
refined and extended the policy syntax to develop fine-grained security policy speci-
fications targeted for IoT devices and SDN network characteristics.

Das et al. [13] present a context-sensitive policy framework for IoT devices, to
control and protect information sharing between them. Their policies capture the
diverse nature of IoT devices and their interaction with network users using an
attribute-based access control policy. Their work mostly focuses on the privacy of
user data. In our case, we have focused on securing the IoT network infrastructure
using fine granular access policies. Beetle [23] is an access control policy framework
for operating systems (Linux, Android ) to control application interaction with pe-
ripheral device resources and provides transparent access to network devices. Later,
Hong used the Beetle framework in home network gateways to control IoT com-
munications [18]. This work does not address the authentication of IoT devices,
or users, which our architecture does consider. Other work on access control poli-
cies for IoT devices can be found in Refs. [24,30,45]. However, none of these works
have used SDN to manage and enforce the policies. Furthermore, they are mainly
concerned with user security rather than IoT security.

4.2.2 AUTOMATIC DEVICE PROVISIONING

Hilmer et al. [17] presented a device provisioning architecture and modelling ap-
proach for smart environments with their sensors, actuators, and devices. This work
focuses on the modelling and assuring easy deployment and connectivity of smart
sensor devices. Our work extends the proposed architecture and adds security ser-
vices for the secure provisioning of these smart sensor devices. Such security ser-
vices enable SDPM to defend against different attacks towards smart sensor devices
and infrastructure.

A multipurpose binding and provisioning platform (MBP) was presented by
Silva [12]. The platform provides an easy open-source solution to provision the
interconnected devices and manages them efficiently using apps. LEONORE is a
service-oriented elastic provisioning infrastructure for large-scale IoT devices [43].
This provisioning architecture focuses on provisioning the application components
associated with the devices. Provisioning the industrial IoT devices manually is
very troublesome due to its environmental complexity and huge numbers. Hence,
Wang et al. [44] have presented a state machine-based device provisioning process
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approach that requires zero human interaction. They are using the remote authentica-
tion dial-in user service (RADIUS) protocol and a one-time password to authenticate
the devices. The above-mentioned approaches consider only the ways to auto provi-
sion the devices. However, as IoT devices are becoming more available, the attack
surfaces for such devices are increasing. Our SDPM architecture considers the IoT
devices state (internal/external) and environmental contexts to provision the devices.
We have introduced granular device profile attributes, which help us to create pre-
cision policies to limit IoT operation. The pre-/post-condition policies utilise such
granular attributes to check the devices and its communication for security purposes.
Such an approach allows us to defend the IoT devices and IoT network infrastructure
from certain attacks.

P. Zhang et al. [49] has proposed a way to detect faulty nodes in a fog system us-
ing the state transition. They are using continuous Markov chain modelling in state
transitions to detect faulty nodes. Our work is entirely different from theirs, as we
are using a whitelist-based approach to detect the device state change. C. Zhang
et al. [48] presented how EEG can be used to assess the driver’s state while they
are driving. The study uses a learning-based algorithm to accurately train and detect
the driver state. It focuses on capturing biological signals (EEG) to determine the
state/condition of a human driver. Our work focuses on assessing the state of the
OpenFlow switch. We define the state of the device in terms of the internal and ex-
ternal processes running in them and the condition of the I/O communication buffer.
Hence, we proposed a security architecture that collects such information and uses it
to make further decisions. The current work does not focus on using learning algo-
rithms; instead, it uses pre- and post-condition policies for its actions.

4.2.3 SECURE DEVICE PROVISIONING

Kohnhauser et al. [20] presented a secure provisioning service for industrial devices.
Their approach focuses on open platform communications unified architecture (OPC
UA) and utilises device certification to provision them securely. Our work uses more
than device certificates. We utilise device and network context-specific pre- and post-
condition policies that allow secure provisioning of the devices. The device context
extends the authentication services with device state policies that can assess a de-
vice’s trust status before provisioning it. This allows the network infrastructure man-
ager to find malicious devices and defend the network from future attacks.

Software defined provisioning (SDP) is a software-defined network (SDN)-
based IoT device provisioning architecture that provides scalability for IoT de-
ployments [26]. This architecture also ensures robust dynamic authorisation and
provisioning of heterogeneous IoT devices. Our architecture does not utilise the
SDN. However, it can be integrated with SDN with some minor modifications.
But the major strength of our work is granular pre- and post-condition policies.
Furthermore, the policies are integrated with the digital twin to check the security
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status of the devices. Hence, our architecture is able to provide robust authentication
and authorisation.

Sousa et al. [38] presented a provisioning architecture for IoT devices that uses
certification authority and a one-time password to provision the devices. Their main
focus is to tackle scalability issues. As mentioned previously, our provisioning ser-
vices use device certification as one of the ways to test the legitimacy of the devices.

4.2.4 MACHINE LEARNING-BASED CLASSIFICATION OF DEVICES

There are many papers that address identification and classification of IoT devices
using machine learning. With device provisioning in smart infrastructures, we require
authentication (to ensure that the correct device is properly identified and authenti-
cated) and authorisation (to ensure the device is behaving properly and its actions
are legitimate). In studies such as [28], fingerprints are used as identifiers, and ma-
chine learning is used to classify these communications and devices as benign and
malicious. For instance, in Ref. [3], LSTM-CNN cascade model is used to classify
the IoT device communications into different categories (such as hub, electronics,
and cameras). Note that such works emphasise device identification based on their
communication and behavioural characteristics. Our work is different to these works
as it is about authentication of devices based on their attributes and state and their
verification using secure credential and certificates, and then using policies for their
provisioning and their subsequent management.

4.2.5 IoT SECURITY AND ATTACKS

Pongle et al. [33], Lyu et al. [25], and Mendoza et al. [27] consider various attacks
to compromise IoT networks. These works focus on analysing the vulnerabilities in
IoT network infrastructure, whereas our work is mainly concerned with the design of
authentication and authorisation policy-based security architecture for IoT network
infrastructure. Pa et al. [31] provide an analysis of Telnet-based attacks on IoT de-
vices. They propose an IoTPot (a honeypot) and IoTBox (a sandbox), which help
to attract Telnet-based attacks against various IoT devices running on different CPU
architectures. Their work mostly focuses on analysing the IoT malware threats. In
this study, we have provided a detailed analysis of Mirai attack. Moreover, our se-
curity architecture helps to block telnet-based attacks and prevent their spreading.
Capellupo et al. [9] present an analysis of present home automation devices such as
Amazon Echo and TpLink smart plug and discuss how they can pose major security
threats to home networks and to user privacy. Their work focuses mainly on address-
ing different threat vectors for the home IoT network infrastructure. Our approach
helps to rectify some of the problems mentioned in their work; for instance, our ar-
chitecture can help to prevent unauthorised users/devices gaining access to network
services and IoT device traffic.
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4.3 FUNDAMENTALS OF POLICY-BASED NETWORK
AND SECURITY MANAGEMENT

The size of network domains is increasing day by day. Each domain consists of
a huge number of users, resources in the form of heterogeneous devices (routers,
wired and wireless gateways, IoTs, servers, etc.), applications (cloud management
tool, monitoring tool, security services, QoS assurance tools, etc.), new network-
ing technologies, and services (on demand multimedia request, online gaming, etc.).
These users, resources, and services inside any network domain are dynamic, and
they can be easily removed, added, or updated during runtime, thus incurring a huge
amount of complexity when it comes to the automatic management and scheduling
of network domain and services, for instance, a huge industrial network equipped
with thousands of time-critical IoT equipment and users using them on demand
wirelessly. Any delay in scheduling the operation of these IoT devices will cause
serious damage to the industrial and production infrastructure. Thus, an automated
approach is needed to control the scheduling as prescribed earlier. This scheduling
problem is only one end of the spectrum of different network domain problems due
to the massive number of users requesting various services through different hard-
ware configurations. Reduced bandwidth, low QoS, and delays in multimedia are the
most common ones. To deal with these issues, policy-based management for network
infrastructures was introduced back in 1999 with RFC2026 [10,21,35,40].

4.3.1 POLICY

A policy is a set of rules that consists of some criteria or conditions with appropriate
actions defining the behaviour of a system, if the particular criteria are successful.
The criteria are declarative and depend on the nature and availability of resources of
that particular system. The actions are tasks that need to be enforced or administered
by the system. Each policy defines how various resources within a system can be
accessed and used if a set of criteria are fulfilled.

4.3.2 POLICY-BASED NETWORK AND SECURITY MANAGEMENT

It is a paradigm where policies are used to control and manage the security and
resources of network infrastructure. It facilitates flexibility in the maintenance of
large and complicated network infrastructure with less effort. It helps to control the
dynamic nature of future network infrastructures. It is easily deployable, requires less
maintenance, is cost-effective, provides better performance, and is adaptable during
runtime, and hence, it is becoming highly popular.

Now, we will describe the common architecture for the policy-based system and
its benefit.
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4.3.3 POLICY-BASED MANAGEMENT ARCHITECTURE

IETF and DMTF have developed a policy core information model (PCIM)
(Figure 4.1). It has four major components: (i) Policy Repository (PR), (ii) Policy
Management Tool, (iii) Policy Decision Point (PDP), and (iv) Policy Enforcement
Point (PEP).

4.3.3.1 Policy Repository (PR)
The storage/database where the policies are stored is known as the policy repository.
It can vary from a simple file to a huge data storage server based on the context of
the management environment. For instance, a social media platform like Facebook
uses a huge warehouse as a policy storage server, whereas a small homes IoT device
management uses one JSON file to store all the management policies in an MQTT
server. Here, this single file acts as a policy repository (PR).

A policy repository serves various purposes in a policy-based management archi-
tecture, such as (i) storing the polices, (ii) querying the stored policies, (iii) retrieving
of stored policies, (iv) resource validation (constraint checking), (v) policy transla-
tion, (vi) policy transformation, and (vii) securely storing the policies.

The policy repository has to be very fast. The performance of the whole policy-
based management system in some cases depends on the speed of the policy reposi-
tory. Currently, SSDs are used to store policies in large warehouses for quicker query
and fast retrieval of them.

Policy Management 

Tool (PMT)

Policy Decision Point 

(PDP)

Policy Enforcement 

Point (PEP)

Policy Repository (PR)

Event/Request 

Response

Response

Retrive

Policy Console 

Figure 4.1 The figure presents a fundamental policy-based management architecture. It has
four major components that help to retrieve information, store policies, formulate decision,
and enforce the policy.
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4.3.3.2 Policy Management Tool (PMT)
A server or host where the Policy Management software resides is known as the Pol-
icy Management Tool. It helps in providing an interactive and user-friendly graphical
or web user interface to easily edit and represent the stored policy. In some cases, the
PMT can accept input from the policy consoles as well. The policy console is a ter-
minal like interface to send CRUD instructions to the PMT.

The PMT maintains the whole policy ecosystem. It helps in the retrieval of the
appropriate policy from the PR. The PMT uses Lightweight Directory Access Pro-
tocol (LDAP) to maintain the communication with the PR [34]. LDAP is a vendor-
neutral, open source application protocol to maintain access and manage information
resources over an IP network. This protocol provides all the features and instructions
of a database management environment such as add, delete, update, search, and bind.
The PMT also helps in the translation and validation of the policies.

One of the major problems with the policy-centric ecosystem is that they are vic-
tim to conflicts. For instance, in a home thermostat, a policy says that if the temper-
ature goes higher than 20 degrees turn it on. On the other hand, for that same home
thermostat, another policy says, it should be turned off. The PMT helps to resolve
such policy conflicts raising alerts to the user interfaces during the installation or
while executing one of the policies.

4.3.3.3 Policy Decision Point (PDP)
The PDP is the monitoring point for this architecture. The PDP evaluates the ne-
cessity of policy enforcement for any certain event. The PDP captures the events
and requests within a system and consults with PMT to retrieve the matching policy
from the PR. It is an intermediary that can translate the events/request readable by
the PMT. It also helps to check whether the policies are enforced correctly or not.

4.3.3.4 Policy Enforcement Point (PEP)
The PEP is a point where the PDP-selected policies are to be enforced. For a network
infrastructure, gateways, switches, routers and WAPs act as PEP. Sometimes, PDP
and PEP can act as a single entity residing in the same device.

It helps with the validation of policies and captures feedback from the system.

4.3.4 BENEFITS OF A POLICY-BASED MANAGEMENT ARCHITECTURE

The following are the benefits of a policy-based management architecture:

Managing the complexity: A system is a collection of different entities, for instance,
an enterprise network consists of smart devices, users, end-host machines, servers,
gateways, and switches. Policy-based management architecture provides a way to
classify entities in a system into different groups and can enforce management
policies into these groups. We can consider the example of the enterprise network
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where it has two VPN networks: one is secure (encrypted channel) and the other
one is normal. Based on the user’s role, their communications are classified into
two groups, namely, classified and unclassified. No matter which devices they log-
in from, the network policies will provide the associated services to the respective
users. Thus, policy-based management helps to simplify device, user, network, ser-
vice management, or any distributed system complexities with less effort.

Less human effort: With policy-based management architecture, it requires less
personnel to configure the network or system environment. Once the polices are
installed, the system should function according to the installed policy. Thus, it re-
quires less human resource and effort.

Time-critical functions: One of the most efficient ways to implement time-critical
functions is policies. For instance, it can enforce timed network policies that can
restrict user’s network communication for a certain duration.

Better security: As the systems become big, it becomes more complex. In these
complex systems, the chances of resource abuse are very high. For instance, in a
networked system, malicious users can launch DDoS attack to disrupt the network
operation. One of the best ways to resolve resource abuse is to use policies.

4.4 IoT NETWORK SCENARIO
This section presents an IoT network scenario and lays out the security policy re-
quirements for such infrastructure.

Figure 4.2 presents an IoT network infrastructure. The IoT network is managed
and controlled by a programmable network controller. There will be IoT sensors and
actuators connected to this network. Each IoT sensor/actuator is connected to a local
IoT node. Multiple IoT nodes are connected to IoT gateways. The IoT gateways are
connected to routers or switches. Sometimes, gateways and switches are combined
and can be either wired or wireless. Finally, all the IoT sensors/actuators upload the
data to the cloud infrastructure.

Based on the IoT network operation, there are multiple locations where security
policies can be applied to fulfill the following requirements:

• User-specific policy: Who can access which device under which condition?
• Device-specific policy: A. Which device can access what network service un-

der which condition?
B. What is the state of the device? C. Which device under what state can serve
requests from particular users?

• IoT/service route-specific policy: A. Which device, owned/used by the user/-
domain/service, can access various network services via which network path?
B. What conditions do the routing devices need to satisfy?

• Cloud service-specific policy: A. What service can serve a particular IoT de-
vice and User under which condition? B. What should be the flow communi-
cation state?
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Figure 4.2 The figure presents an IoT scenario where multiple sensors/actuators are con-
nected to a programmable network infrastructure. They upload data to the cloud infrastructure.
Users can control these devices using cloud service-specific apps.

4.4.1 TYPES OF DEVICES AND DEVICE ONTOLOGY

4.4.1.1 Types of Devices
IoT devices can be diverse, depending on the type of protocol they use and its purpose
of use. For instance, LoWAN, 6LoWPAN, and ZigBEE are different types of proto-
cols supported by the IoT devices. IoT devices used in the medical domain, agricul-
ture domain, and industry domain are of various types as they are purpose-built and
targeted to achieve a specific goal. However, here we focus on the connectivity of the
devices, i.e., how they are connected to the network infrastructure. Our approach for
the provisioning of devices envisages the devices to be either plug-and-play or con-
figurable. A plug-and-play device has embedded sensors and actuators and provides
interfaces to access sensor data and control it through its actuators. Configuration
of this type of device is not possible. Examples of such devices are WiFi-enabled
wearables, cameras, and audio systems.

A configurable device has sensors and actuators attached to it and offers a runtime,
e.g., to deploy device adapters that extract and provision sensor data. An example of
such a device is a Raspberry Pi. There can also be constrained configurable devices
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with limited processing and storage capabilities, which can be connected to more
powerful systems such as a Gateway. Arduino is an example of such a constrained
device. To classify the IoT devices more precisely, we introduce a device ontology
now.

4.4.1.2 Device Ontology
A device ontology is a meta-data based descriptive representation of a device, its ca-
pabilities, and its properties. The device ontology describes the details necessary for
device registration, binding, and enabling access to the devices; it can also be used
as a meta-data source by IoT applications. A device consists of a sensor, actuator,
adaptor, and its state. The device ontology contains meta-data, including sensor and
actuator specifications such as their accuracy and frequency and many more. The use
of ontologies in IoT is widespread due to the heterogeneous, dynamic environments
that have to be integrated. The device-related information in ontology allows the
security services running in the network infrastructure to perform preliminary secu-
rity assessments while on-boarding the device. The device ontologies are extensible,
which can take into account new processes and features.

In our current security architecture, device ontology will help formulate the pre-
and post-conditions required for the policy-based approach to secure IoT devices
provisioning.

Now, we present how the ontology can help to present a device. Figure 4.3
presents a schematic representation of such an ontology.

Sensor and actuator: A device can be equipped with both sensors and actuators.
Each sensor/actuator consists of a name and an identifier. There can also be other
attributes associated with a device and its sensor/actuator module. Their name, ID,
types, location of use, allocated channel, etc., are most common attributes a sen-
sor/actuator has. Apart from that, a device manufacturer can include sensor/actua-
tor quality-specific attributes. For instance, a water level indicator sensor can have
quality-specific attributes such as accuracy and sensitivity. There can be certificates
associated with a device from the manufacturer, which will be useful for device at-
testation during boot time from a security perspective.

State: Each device has an operating system or firmware that controls its function or
behaviour. Input to the sensor or other internal and external events are linked with
the IoT device’s state. The state of a device will also include the state of its inter-
nal soft/hard components, i.e., OS, physical memory, and IO state. Hence, from a
security and trust perspective, a device is subjected to external and internal events.
For instance, an external event could request to read data from its sensor or perform
an actuator’s action. The internal events are related to the running of its operating
system, for instance, an I/O driver handling the input and output operation of a
Raspberry Pi device using Raspbian OS.
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Figure 4.3 Device ontology is a meta-data based descriptive representation of a device, its
capabilities, and its properties. This figure presents the device ontology for the secure provi-
sioning architecture. A device can be a sensor or actuator. Each will have associated attributes.
The adapter attributes present communication options, and the state attributes present the de-
vice status.

Adapter: An adapter is a communication socket that the devices use to communicate
with the network infrastructure. This is a set of libraries that helps the devices to
understand the communication protocol, build, transmit, and receive data packets to
and from the devices [6,17,29]. We use the adapter to capture MUD policies, which
focus on communications of devices. For instance, a MUD policy for a smart bulb
specifies that it should not communicate with the smart meter or the smart refrig-
erator. Instead, it should communicate with the update server of the manufacturer.
These are specified in the form of access control lists for communications.

However, MUD policies do not address device state-based authorisations used
to specify policies such as those needed for addressing patch vulnerabilities for
devices or enforcing trust-related policies based on the state of the device. Our
approach is able to specify not only MUD-based policies (as shown in Figure 4.3)
but also more fine-grained policies based on attributes and state of the device as
well as those involving attributes of the network environment. This helps us to
specify policies capturing the requirements of different IoT applications as well as
those needed in secure provisioning and management of devices.



Policy-Driven Security Architecture for Internet of Things (IoT) Infrastructure 89

4.5 POLICY-DRIVEN SECURITY ARCHITECTURE
Now we will present the policy-driven security architecture for IoT infrastructure.
The security architecture focuses on solving the following challenges (Figure 4.4).

• Challenge 1: Security provision the IoT devices.
• Challenge 2: Manage resource-constrained IoT devices securely in an IoT net-

work infrastructure.

4.5.1 DEVICE PROVISIONING?

The process of on-boarding an IoT device into a network infrastructure is termed as
provisioning. The simplest form of provisioning is just an IP assignment, enabling
the device to communicate with the rest of the network infrastructure devices and

GWI

*GW- IoT Gateway

*N-IoT Node

*PbSA- Policy based Security Applica on

NI

SW1 SW2 SW3 SW4

SouthBound Interface (Forwarding Devices)

OpenFlow Swithces

IoT Gateways

IoT Nodes

Sensors/Actuators

GWII

NII NI NII

User A

User B User C

User D

User E User F

NorthBound Interface

Network OS Core Applica ons and

Modules

IoT Authoriza on

Authority

Programmable IoT Security Services

IoT Device

Provisioner
Repositories

Evalua on

Engine

Policy Manager

Enforcer

PbSA

Figure 4.4 The picture presents a programmable network architecture and associated se-
curity services to secure the IoT network infrastructure from network attacks. The security
service, as well as the network infrastructure, is being represented at an abstract level. Hence,
it can be customised to suite the infrastructure requirements.



90 Internet of Things Security and Privacy

cloud. However, such simple provisioning may lead to potential security issues. A
classic example is malicious devices being provisioned in the network. Another ex-
ample is resource-constrained devices leaking provisioning credentials that can be
used by the adversary to launch further attacks on the network. In this section, first,
we will present the need for and requirements for secure device provisioning and
then explain what policy-based device provisioning is.

Requirements of secure device provisioning include the following:

• R1 (Identity): Nowadays, devices or their firmware can be physically tam-
pered before they are being used in any smart network infrastructure. Once
these rogue devices are provisioned into any smart network infrastructure, they
will act as a gateway for any adversary to launch further attacks on the net-
work domain. Hence, we need a proper mechanism to verify the identity of the
device.

• R2 (Authentication): Lack of proper authentication will allow the adversary
to inject fake IoT devices into any network infrastructure. This can lead to a
potential hazard, for instance, “Stuxnet ”, causing massive damage to nuclear
powerplants.

• R3 (Authorisation): As the number of IoT devices are increasing, managing
and identifying rogue devices and their activities within the network is becom-
ing critical. A rogue device can act like a zombie and can compromise other
devices or intercept human communication and actions. Hence, the network
must have a device flow authorisation mechanism that only permits legitimate
flow actions to and from the devices.

• R4 (Trustworthiness): Sometimes IDS and IPS systems fail to detect a ma-
licious device. Such failures can occur due to the nature of their activities or
the frequency in which they do such events. For instance, a smart speaker is
equipped with a MIC, which continuously records the conversation and trans-
mits them (randomly or in precise time) to an adversary cloud. Although such
incidents are malicious, they are not monitored by the IDS/IPS, and so, they are
not reported to the owner. The examples demonstrate that the devices can be-
come malicious or untrustworthy to carry on certain privileged activities over
time. Hence, there is a need to know the trust status of the IoT devices.

4.5.1.1 Policy-Based Secure Device Provisioning
To achieve secure provisioning of a device, we propose a policy-based approach.
It is a mechanism/services in which network, security, and device attribute-specific
policies are used to securely provision the devices into a smart network infrastruc-
ture. The policy specifies pre-conditions that need to be satisfied before a device is
provisioned, whereas the post-conditions specify the set of conditions that the de-
vice needs to satisfy after the device’s provisioning. The conditions in our policy
based approach consider three aspects of a device, namely: (i) attributes of a device;
(ii) properties based on the state of a device; and (iii) rules associated with a de-
vice. Such a granular policy-based approach enables us to capture a range of security
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constraints related to the secure provisioning of various IoT devices. We outline a
security architecture to realise such a policy-based approach for secure provision-
ing of IoT devices. We envisage that such an architecture can be integrated with the
existing mechanisms and infrastructure in a cloud platform (such as Azure IoT or
AWS IoT Services), to build a proof-of-concept demonstrating secure provisioning
of devices in a smart agriculture farm scenario.

We will now present the syntax and attribute granularity of the policy-based ap-
proach to secure provisioning of a device.

4.5.1.2 Security Policy Language for Provisioning Devices
• Pre-conditions: These are a set of conditions that a device needs to satisfy

before being connected to the network.
• Post-conditions: These are a set of conditions that a device needs to satisfy

subsequent to provisioning.

4.5.1.2.1 Pre-condition
Pre-conditions are based on attributes and properties associated with the device and
attributes of users who can provision the device. A diagrammatic representation of
pre-conditions is shown in (Figure 4.5)

• User attributes: A pre-condition can specify conditions on the users who can
provision a device. A device can only be provisioned by users who satisfy these
conditions. This can be specified explicitly by naming the users or groups or
roles associated with a user or, more generally, in the form of set of attributes
that the users must have. From a security point of view, these attributes need to
be reliable such as user certificate (e.g., X.509 certificate) and secure creden-
tials. This can be specified using role-based and attribute-based policies.

• Device attributes: A pre-condition can specify conditions on the attributes that
a device must have before it can be provisioned. The device attributes include
device type, device certificate, and certificate of the device manufacturer.

• Device state properties: A pre-condition can also specify conditions that the
state of a device needs to satisfy. We will express this in the form of state
properties. We will elaborate these properties further in the next section.
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Figure 4.5 A visual representation of the pre-condition for the SDPM architecture. Here, 1
presents the conditions over entities and attributes represented by 2 and 3, respectively.
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4.5.1.2.1.1 Pre-condition Examples In this section, we provide some exam-
ples of pre-conditions in the policies used to provision IoT devices.

We will denote a device as x and a valid user as u.

• Using security attributes: The device x can be provisioned if and only if the
user is a valid user (ux

i ) and belongs to a valid group (Group), and the device
is manufactured by a valid manufacturer. That is,

– Device x can be provisioned by user u i f u is a valid user and type(x) is
valid and manu f acturer(x) is valid

For instance, u can be valid, i f cert(u) is valid and/or u ∈ Group is valid.
Similarly, manu f acturer(x) is valid i f cert(manu f acturer(x)) is valid.

• Using state properties:

– Property 1 - New device: The device can be provisioned if it is a new de-
vice. This can be checked by examining the device log. If there is no device
log (and device has never been used), it can be inferred that the device is
new. Assume that this is reflected in a state variable new. Using this prop-
erty, the condition can be expressed as follows:
i f (new(x) is valid), then the device can be provisioned.

– Property 2 - Device internal process state: The device ontology stores
a set of benign and default processes for each IoT device in its database.
During device onboarding, the SDPM uses device whitelisting with the help
of the device ontology database to check the processes running in the device.
Now,assume there is a reference set of processes available for a device (e.g.,
whitelisted processes for a device). Any new device that generates these
whitelisted processes when it runs can be provisioned. That is,
i f (∀process(x) ∈ Re f erence Set), then provision the device.

– Property 3 - Device external process state: External communications of a
device are reflected in the I/O buffer state. Applications and services running
inside an IoT device communicate using network sockets/ports. These ser-
vices continuously disseminate information (data/control) using these ports
(essentially, it means writing information into the I/O buffer). Our secu-
rity architecture considers such communication port behaviour as an I/O
buffer state change. Network enumeration or probing tools (such as nmap)
are used to check the network port status. Our implementation uses probing
and fuzzing to check the I/O buffer state.

In this case, the property is based on the I/O buffer state used to detect
whether the device is in an insecure state (e.g., that can potentially leak in-
formation). For instance, assume a sensor’s buffer is supposed to have only
numeric data type input or output. Suppose an adversary injects malicious
data that are not of numeric value (such as a string). In that case, this mis-
match in data type in the device’s buffer will be treated as malicious and the
device will not be provisioned. That is,
i f (i/o state(x) is valid), then provision the device.
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4.5.1.2.2 Post-condition
Post-condition policies lead to actions that should be performed after a device is
provisioned.

After the devices are provisioned, they are registered in the Provisioned Devices
Database. The set of post-conditions and actions will be assigned to the device that
has been provisioned in this database. The post-conditions can use environment pa-
rameters such as location and time, as well as involve state properties of a device
Figure 4.6.

• Environment parameter - location: Post-conditions can use the location pa-
rameter to specify where a device should be provisioned. This can also be
mapped to network reference position such as the IP address or the location of
the gateway to which the device should be connected to.

• Environment parameter - time: Post-conditions can use the time parameter
to enforce when a device should be operational. For instance, this condition
can be used to detect potential misbehaviour or malfunctioning of a device.

• Device state properties: As in the case of pre-conditions, post-conditions can
use a device’s internal and external state (such as process list and I/O buffers)
to enforce actions that can be used to detect misbehaviour or malfunctioning of
a device. For instance, the post-condition can specify when a water level sensor
is provisioned, if the sensor measurement were to cross the allowed maximum
threshold, then this will lead to a generation of system alert.

4.5.1.2.2.1 Post-condition Examples Let us assume that the device x is pro-
visioned with a set of post-conditions.

• Environment parameter - location: A device is provisioned at certain specific
locations as specified in the post-condition, location(x) = {α,β}.

• Environment parameter - time: When a heat-lamp device in the farm is pro-
visioned, the post-condition can ensure that it operates only when the temper-
ature is below a certain threshold. For example, a time-specific post-condition
can be of the form operational time(x) = T , where T is a time duration be-
tween (0100 < T < 0700).

<Post-condition>IF

Device Attributes

State Properties

Location

1: Condition;

2: Entity;

3: Attributes

Time

1
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Figure 4.6 A visual representation of the post-condition for the SDPM architecture. Here, 1
presents the conditions over entities and attributes represented by 2 and 3, respectively.
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• Device state properties: At the time of provisioning a water flow sensor de-
vice in a smart irrigation system, post-conditions can be used to detect (by
recording the level in the logs) and prevent overflow (by generating an alarm
when it passes the recommended water level). For instance, post-conditions
can include:
log level if flowlevel(x) = Γ, where 2.5 < Γ < 3 and generate alarm if
flowlevel(x) ≥ 3

4.5.2 SECURE SMART DEVICE PROVISIONING AND MONITORING
SERVICE (SDPM)

Figure 4.7 gives an outline of the proposed components internal diagram. This
internal diagram consists of a set of software components: Device provisioning
gateway (DPG), provisioning evaluation engine (PEE), device provisioning ser-
vice (DPS), policy database (PD), and provisioned devices database (PDD) with
the post-conditions (POST-P). It has three modules and two databases to store the
pre-condition policies and post-action/condition policies. Respective secure software
modules can only access each database. Apart from that, we have introduced a digital
twin of the device in the architecture. The digital twin’s purpose is to represent the
device status to the cloud and the user. Now we will present the functional description
of each module in this architecture.

The software modules are the fundamental blocks of the security architecture,
and the choice of implementing these modules depends on the type of smart network
infrastructure and the connectivity to the cloud.
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Figure 4.7 The figure presents the various components of secure smart device provisioning
and monitoring service. The components presented in block form are software modules/scripts
that help to formulate the security architecture. The devices can be physical or virtual, and they
are represented in digital twin form.
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• Device Provisioning Gateway (DPG): A device provisioning gateway is a
software module. However, it can be provisioned in any local gateway or IoT
hub. This is a minor implementation change only. This module performs three
significant functions. Firstly, it receives the provisioning request from the de-
vice or the user on behalf of the device. Secondly, it interfaces with the policy
database and fetches the appropriate pre-conditions that need to be satisfied
before the device can be provisioned as well as the post-condition policies. Fi-
nally, it passes the respective policy information along with the device detail
to the provisioning evaluation engine (PEE).

• Provision Evaluation Engine (PEE): A PEE module is the decision making
authority in this security architecture. The PEE module accepts all the device
information and respective policy information from the DPG. After that, it
evaluates the pre-conditions using the device attributes, parameters, and prop-
erties and determines whether the pre-condition policies are satisfied for any
particular device. For any device, when the pre-conditions are completely sat-
isfied, the PEE forwards the information to the DPS.

• Device Provisioning Service (DPS): The DPS’s purpose is to add the PEE-
satisfied devices to the Provisioned Devices Database (PDD). This module
also monitors the provisioned device activity and compares them with the
post-condition policies. If any post-condition activity is not legitimate, then
the DPS service can stop that particular device action. An event logger in con-
junction with the DPS service logs the provisioned device activity. These event
logs later help the security architecture to formulate a device’s twin. In Sec-
tion 4.5.4, we will describe the digital twin in detail.

• PD: The Policy Database stores the pre-condition and post-condition policies
associated with the devices. This database can be implemented using JSON
and can be mounted in the Azure IoT/AWS IoT. A local edge gateway or a hub
can also be used to mount this database.

• Post-P: This database stores the device-specific post-condition policies. Each
device can have multiple post-condition polices. The database is a simple
JSON database.

4.5.3 SECURITY PROVISIONING PROTOCOL

Now we will explain the functional steps of the secure smart device provisioning
module (Figure 4.8).

• Step 1: The device sends a provisioning request to the DPG.
• Step 2: The DPG retrieves two types of information: (i) device-specific and (ii)

pre-/post-condition policies. With this information, DPG creates a device pro-
visioning package (X). We have used Algorithm 2 to retrieve the information
and create device provisioning package (x).



96 Internet of Things Security and Privacy

Device DPG PEE DPS PD

S6: Inform DPG 

S1: Device Provisioning 

Request

S2A: Fetch Device 

Attributes

S2B: Fetch Device Pre-    Condition  Policies

PDD

S2C: Fetch Device Post-    Condition  Policies

Create Device Provisioning Package (X)

S3: Sends (X) To PEE 

Evaluate Provision Eligibility for a Device 

S4: Decision Back to DPG 

S5: Provision the Device

Provision The Device

Check Post- Condition

RUN TIME
Fetch PDD and Check Post- 

Condition Continuously

Satisfies the 

 Post-Condition

Violates the 

 

Report to DPS and Revoke

 the Device Association Post-Condition

Figure 4.8 This figure describes how SDPM operates at a functional level. Here, we have
presented the inter-module functional communication of the architecture components in both
boot and runtime. Also, the figure demonstrates how pre- and post-conditions can interact with
the sub-modules.

• Step 3: The DPG forwards the device provisioning package (X) to the PEE.
The PEE compares the device attributes against the pre-condition policies, and
it prepares a recommendation.

• Step 4: The PEE sends the recommendation back to the DPG.
• Step 5: If the device has satisfied the pre-conditions, then DPG requests the

DPS to provision the device. If the device fails the pre-conditions, the DPG
informs the device that it cannot be provisioned. The DPS registers the de-
vice, acts upon the post-conditions, and stores the results from the actions and
any remaining post-conditions. That need to be executed during runtime in the
POST-P database.

• Step 6: The DPS informs the DPG of the nature of the provisioning (success-
ful/unsuccessful) of the device, which then informs the device accordingly.

• Runtime: During runtime, the DPS continuously checks the post-condition
policies against the device’s actions. If the actions are legitimate according to
the post-condition policies, the DPS allows them to perform the action. Other-
wise, the DPS stops them. Both types of events are logged in the event logger,
which later helps the digital twin.

4.5.4 DIGITAL TWIN

In this section, we will explain the digital twin, its function, and its importance in
SDPM.
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Algorithm 2 Pseudo Algorithm for Device State Measurement
T PM INFO,PS LIST,MEM REPORT,OS INFO
Provisioning Request
T I[] = T PM INFO
PL[] = PS LIST
MR[] = MEM REPORT
OI[] = OS INFO
PR = Provisioning Request
while 1 do

if PR == True then
f etch(T I[])
T IH = hash(T I[])
f etch(PL[])
PLH = hash(PL[])
f etch(MR[])
MRH = hash(MRH[])
f etch(OI[])
OIH = hash(OI[])
X = concat(T IH,PLH,MRH,OIH)
send(X)

else
send(Device not compatible)

end if
end while

4.5.4.1 What Is a Digital Twin?

A digital twin is a digital representation of any provisioned device that is a part
of the smart network infrastructure. A digital twin contains device data and meta-
information, which defines a device. For instance, a temperature sensor logs a sensor
reading for every 10 seconds. A digital twin of this particular sensor will also store
the same data. Apart from that, a digital twin can store metadata and event-driven
action associated with the data or the metadata. For instance, for our previous sensor
scenario, it is possible to set an action to trigger an alarm when the temperature
reaches a threshold value.

4.5.4.2 Digital Twin in SDPM

SDPM has a digital twin, which performs the following functions:

• It represents the smart devices in the smart network infrastructure.
• It stores the device event logs.
• It has granular policies over the event attributes. This facilitates the use of post-

condition policies in the IoT network infrastructure.
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4.5.4.3 How It Works?
In SDPM, the digital twin maintains a log of events or actions executed by the device
at any point in time. For our digital twin, each event consists of action. Each action
operates on a device state. Each device state is represented by device data, meta-data,
and associated operation.

Each state of the device is represented as Sx, and each event is represented as ey.
A device state change from St to St ′ for an event et at time t will be represented as:

St
et
→ St ′ (4.1)

So, the digital twin model for SDPM will be represented as:

At time, t :< St ,et > (4.2)

where, St = set of device state;
and et = set of events performed by the external and internal entities.

Here, we introduce event-driven policies. For instance, an industrial actuator uses a
stepper motor that rotates at 200 rpm. The consecutive start duration is 10 minutes
and the operational period is 2 minutes. However, an adversary has tampered with the
device and changed the motor’s speed, but not the operational duration. Our event-
driven policies can detect this state change, and digital twin can enforce an action to
raise an alarm or to stop the motor function to avoid damage.

Hence, our SPDM extends the digital twin concept by incorporating the device
state into the meta-information and then monitoring this information to enforce spe-
cific policies for dynamically controlling device behaviour. This in turn is used to
detect device vulnerabilities and achieve dynamic patch management in a secure
manner. Furthermore, the pre- and post-provisioning policies used in our approach
help to capture the pre-requisite authorisation requirements and post-obligation re-
quirements in devices’ behaviours.

4.5.5 POLICY-BASED SECURITY APPLICATION

Our programmable IoT network infrastructure consists of programmable network
switches such as OpenFlow switches or IoT Gateways and end hosts (IoT sensors/ac-
tuators). A single-network controller manages the IoT network infrastructure. The
programmable network devices (OpenFlow devices) forward the packets generated
by the IoT devices/users, which are then subjected to the policies specified in the net-
work controller for routing across the network. Figure 4.4 shows the policy-based se-
curity application (PbSA) for securing the programmable IoT network infrastructure.
As PbSA is designed to be modular, the components of PbSA can be implemented on
a single host or can be distributed over multiple hosts. Here, we provide a detailed
description of different modules of PbSA. Modules are software components of the
main application.
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PbSA consists of four major modules, namely (i) Policy Manager, (ii) Evaluation
Engine, (iii) Repositories, and (iv) Policy Enforcer.

• Policy manager: This is the core component of the security service applica-
tion, as it manages every operation such as extracts IoT device flow attributes,
updates the topology repository, and instructs the policy enforcer to enforce
the policies at the OpenFlow IoT Gateways. It also communicates with the IoT
Provisioning application for the transfer of authentication service tokens after
checking the network service request from the IoT devices.

• Evaluation engine: The engine evaluates the service request against the rele-
vant policies stored in the policy repository.

• Repositories: Our security service application has two repositories: (i) Topol-
ogy repository and (ii) Policy repository. The topology repository contains
the network topology of IoT devices and end hosts/users. Network controller
might have its own device topology repository. We are using the same topology
repository for this purpose. The policy repository contains the policy expres-
sions (PEs) associated with the various IoT devices and the associated flow
attributes. The attributes in PEs also include security parameters such as secu-
rity labels associated with the programmable network IoT Gateways.
Policy enforcer: The policy enforcer fetches the required information from
the programmable IoT Gateways and enforces the routing rules or flow rules
obtained from the policy manager.

4.5.5.1 Security Policy Specifications
The security policy specifications are expressed as policy expressions (PE), which
specify whether packets and flows from IoT devices and end hosts follow a partic-
ular path or paths in the network, and the conditions under which the packets and
flows follow these paths. The PE specification syntax uses an enhanced version of
RFC1102 [11]. They are fine-grained and specify a range of policies using various
attributes of IoT devices and flows; for instance, these attributes include different
types of devices, source and destination attributes, flow attributes and constraints, re-
quested services, security services, and security labels. The following attributes have
been specified:

a. Flow attributes: Flow identifier, type of flow packets, security profile indicat-
ing the set of security services that are to be associated with the packets in the
flow;

b. Device attributes: Identifiers specific to IoT sensor/actuator;
c. Switch attributes: Identifier of the switch and security labels associated with

the switch (as well as OpenFlow IoT Gateways);
d. Host attributes: Identifiers associated with the host such as source/destination

host ID;
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e. Fow and domain constraints: Constraints such as flow constraints (Flow-
Cons) and domain constraints (DomCons) associated with flows from a spe-
cific device; for instance, a constraint might specify the flow from a specific
type of sensor, should only go through a set of switches that can provide a guar-
anteed bandwidth; from a security point of view, a constraint could be that a
flow should only go through OpenFlow switches that have a particular security
label;

f. Services: The services to which the PE applies (e.g., FTP storage access);
g. Time validity: The period for which the PE remains valid; and
h. Path: Indicates a specific sequence of switches that particular flows from spe-

cific IoT devices/users are allowed or should traverse. The PEs support wild-
cards for attributes, enabling the language to specify policies for a group of
IoTs/services.

A simplified policy expression template is as follows:

PEi = < FlowID, IoT DeviceID,SourceAS,
DestAS,SourceHostIP,DestHostIP,SourceMAC,
DestMAC,User,FlowCons,DomCons,Services,Sec−Pro f ile,Seq−Path >:<
Actions >
where i is the policy expression number.

4.6 PROTOTYPE IMPLEMENTATION
In this section, we will explain how we have created and implemented a proof-of-
concept (PoC) prototype of the proposed security architecture.

4.6.1 NETWORK SETUP

We have developed a proof of concept for the proposed security architecture. The
proof-of-concept implementation has network, hardware, and software modules.
Some parts of it is implemented in the Azure cloud. Our implementation setup uses
Oracle VM Box, Mininet-WiFi [14] and ONOS as the open-source network con-
troller. We are using a workstation with Core i7 - 7700K @ 4.20 GHz CPU; 64 GB
of RAM for this setup. Here, the local IoT hubs communicate with the Microsoft
Azure IoT cloud services. The hub is running as a virtual machine, and the virtual
IoT devices are connected to the hub. The Azure services collect the data sent by
these devices. Our SDPM and PbSA services enforce the policies at the network
infrastructure level and integrate with the core application services running on the
Azure cloud. The proof-of-concept network configuration is shown in Figure 4.9
runs an ONOS controller inside a Ubuntu Server VM. The Mininet-WiFi is used to
simulate a wireless network and Raspbian VM acts as IoT devices are connected to
the WiFi network.
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Figure 4.9 Network configuration.

4.6.2 SECURITY ANALYSIS

In this section, we will present first the security properties, then present some attack
case studies. Finally, we will mould the attack case studies to real-time attack sce-
narios in which we will explain how our proposed SDPM provides security services
to the devices and the network infrastructure.

4.6.2.1 Security Properties
Here, we present various security properties of SDPM. We have provided an empir-
ical security feature evaluation of the SDPM. Here, we have explained the security
capabilities of the SDPM and presented case studies to demonstrate these capabili-
ties using real-time attacks. Later, we have discussed real attack scenarios that can
be counteracted using the proposed SDPM.

• Authentication: SDPM offers fine-grained authentication services. The Mi-
crosoft Azure services offer X.509 and symmetric key-based authentication
for IoT devices and hubs. We have extended the capabilities by introducing
pre-conditioning policy-based authentication for IoT devices and hubs. SDPM
pre-condition policies include user/device attributes and devices states. For in-
stance, a device with untrusted processes running in it will never be provi-
sioned. Hence, SDPM precondition policies help to authenticate the devices
and provision them securely.

• Authorisation: As the IoT devices are resource constrained and may fail to
meet optimum hardware requirements to run the security services, with SDPM,
we have introduced post-condition policies. These policies help to monitor
the state of the provisioned devices and their behaviour. The post-condition
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policies consider device state and device/infrastructure specific contexts. For
instance, with a post-condition, we can limit the sensor device packet transfer
rates. This, in turn, can help in limiting DDoS attacks from malicious devices.

• Device state: Like any other computer system, IoT devices change their soft-
ware and hardware state with time. Any attack towards these IoT devices may
push them to an untrustworthy state, leaving both the device and networking in-
frastructure vulnerable to further attacks. Hence, state (hard/soft) of the devices
is an important factor and should always be considered. Both pre- and post-
condition policies consider the state of the devices. Any state change which is
not reflected in the policies is considered as a suspicious device. In such cases,
the device could either be unprovisioned or isolated for further investigation.

• Digital twin: In normal practice, a digital twin does not reflect the security
properties of a device. However, with SDPM, we modelled the digital twin to
reflect the security-specific aspects of the devices, for instance, devices states,
environment contexts, etc. They help in enforcing post condition policies in
the IoT network infrastructure.

• Attack detection and mitigation: SDPM is geared to detect attacks with pre-
and post-condition policies. Also, with granular policy enforcement architec-
ture, SDPM can un-provision, isolate devices, and mitigate attacks.

• Flow authorisation: Another important requirement is the need to be able
to control and secure the flows between the IoT devices in the network. A
major advantage of using programmable networks like SDN is its ability to
provide domain-wide policy management for secure control of dynamic flows
between IoT devices. Our policy-based security application (PbSA) enables
fine-grained flow and path-based secure routing policies enforcing secure com-
munication between end to end services and devices. For instance, a particular
path can be restricted to only devices with a security label of at least high and
a specified level of throughput while also being constrained to a set of spec-
ified (secure) paths. Such path-based policies are critical when securing data
from sensitive devices but are also useful for applications with different qual-
ity of service requirements. For instance, traffic requiring certain bandwidth
needs to take a path where the network devices and channels have the neces-
sary capabilities. Furthermore, suppose due to some attack (e.g., DDoS attack),
traffic from a device is not able to get through the network. Our PbSA provides
an alternative path for the traffic from the device to reach its required desti-
nation. This highlights the novel feature of our PbSA to dynamically manage
flow and path-based security policies to achieve secure communications across
domains.

• Flow Confidentiality, Integrity, and Availability (CIA): Our proposed archi-
tecture provides on-demand CIA services. These requirements are specified
as part of the policy specifications in the PbSA module. In terms of confi-
dentiality, specific flows along specific paths between specific devices can be
encrypted. The encryption keys are established via a secure key management
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process. The flows remain encrypted from end to end, and the intermediary
OpenFlow switches will not be allowed to decrypt the payload. Similarly, the
flows are also protected for integrity using cryptographic mechanisms. More-
over our security architecture ensures the devices are authenticated and their
access to services and flows are determined by the access privileges granted to
these devices as per the policy specifications in the PbSA.

4.6.2.2 Attack Case Studies
• Case 1 - A device sending a single malicious packet: In this scenario, an

adversary steals the device credentials and launches an attack towards the IoT
gateway.
To defend against this attack, we need an authentication mechanism. We will
simulate the attack with raspberry PI as a compromised IoT device.

• Case 2 - A device sending a number of malicious packets: In this attack
scenario, a device floods the IoT gateway with a stream of fake packets. In this
attack we want to test the robustness of the authentication services.

• Case 3 - A compromised device injecting malware: This scenario is very
specific to devices that are authenticated and are already provisioned in the
smart network infrastructure, for instance, devices infected with Mirai Mal-
ware. We will create attack scenarios of this type, and after that, we will test
our authorisation policies.

• Case 4 - A state change of a device due to external manipulation: The digi-
tal twin provides state and event-driven monitoring features for a device. In this
scenario, we will try to verify digital twin capabilities. Here, we will perform
some attacks on the IoT devices that will cause state changes in the devices.
These state changes are hard to detect by the authorisation policies. Our event-
driven state monitoring services in digital twin can detect these changes. We
will test such cases.

• Case 5 - Spoofing/masquerading: In the IoT network infrastructure, a ma-
licious adversary can try to impersonate another user/device. An adversary
can use such malicious approach to capture/modify the sensitive information
from/in the devices as well as send malicious instructions to the actuators.

• Case 6 - Man-in-The-Middle (MiTM) attack: In MiTM attack, an adversary
intercepts the communication between the two parties. The IoT infrastructure
is also vulnerable to this type of attack. An adversary or a malicious IoT device
can change the IoT device/user ARP caches of the two communicating parties
to initiate a MiTM attack in the IoT network infrastructure.

Now, we will convert these attack case studies into real-time attack scenarios.
Firstly, we will show, how an adversary can easily compromise an about-to-be pro-
visioned device or already provisioned device. After that, we will show how SDPM
can defend such attacks using pre-/post-condition policies.
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4.6.2.2.1 Attack Scenario 1
This scenario is more specific to the attacks explained in case studies 1 and 2. As
previously described earlier in these attacks, an adversary launches flooding towards
the IoT device/hub/gateway/server.

In Figure 4.10a, a typical IoT environment is shown where multiple sensors col-
lect real-time data and upload it to the cloud via a central IoT Hub. The cloud is
used for data storage and analysis and reporting by other applications and services.
In this attack scenario, an adversary gains access to one of the IoT devices and runs
malicious code, which is then used to target and disable the upstream IoT hub. Here,
X.509 certificates are used to the authenticate the devices with the IoT hub. We as-
sume that the adversary has already captured the X.509 certificates. in early 2021,
in SolarWind attack the adversaries captured the X.509 certificates of applications
by modifying the Azure Active Directory settings [16]. Later, they used the keys to
maintain access to the compromised network infrastructure and remained dormant
for further attacks.

The attack takes the form of a network denial of service; in this case, we are
using LOIC (Low Orbit Ion Cannon) to launch network packet flood [5] and over-
whelm the upstream devices on the network. LOIC interface and settings are shown
in Figure 4.10b, and we are running LOIC from a Kali Linux VM. As the attacker
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Device with
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(a)

Figure 4.10 This figure presents an attack scenario (1). (a) A schematic diagram of the
network setup is presented here. Also, the schematic shows how an adversary can penetrate an
IoT sensor domain.

(Continued)
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(b)

(c)

(d)

Figure 4.10 (Continued) (b) Low orbit ion canon [5] application is used to generate the
flooding attack. The tool configuration to launch the attack is presented in the figure. This
figure presents the after attack artefacts from scenario 1. (c) The figure presents the wireshark
trace while the attack is happening. (d) This figure presents how SDPM generates an alert for
an ongoing flooding attack.
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compromised device floods the hub, it tries to process the packet request, which con-
sumes a huge amount of memory and processing power. Finally, the attack proceeds
to the point where the level of incoming traffic reaches a peak and then the hub
freezes. We have shown a wireshark trace of the attack in Figure 4.10c. We have also
noticed that, it takes about 4 minutes from the time the attack is launched for the
peak to occur and the hub freezes.

Now we will activate SDPM, which uses post-conditions and policies to mitigate
such Denial of Service attacks. These post-conditions work after a device is provi-
sioned and connected. Basically, these post-conditions monitor the device behaviour
after it is provisioned and check if the device is behaving maliciously. If so, this is
stopped. With SDPM we achieve this via the notion of a digital twin. As described
previously, a digital twin is a digital representation of the physical IoT device and
replicates the physical device’s state attributes. So in this case, the digital twin has
the attribute corresponding to the network traffic value sent by the physical device.
Now the monitoring service can check the digital twin’s state and check whether the
network traffic value exceeds the safe threshold, previously set by the policies. This
is what the post-conditions do. If the safe threshold is exceeded, then the physical
device is disconnected. For the current attack, our SDPM monitoring service contin-
ually queries for any device twins whose traffic value exceeds 150,000. Figure 4.10d
shows that, when the traffic value grows beyond 150,000, the monitoring service
sends an alert for the flooding attack and SDPM blocks the device. Thus, SDPM
secures the IoT infrastructure from flooding attacks.

4.6.2.2.2 Attack Scenario 2
This attack is more specific to preconditioning checks before the device gets provi-
sioned (specific to case study 3 and 4). These checks are done prior to provisioning,
and we will show how these checks can help improve security with this scenario.

In this scenario, we consider that the sensor is purchased from a manufacturer or
via an online store, and it is provisioned and connected to the cloud via a central
IoT hub for communications, delivery of telemetry data, and management. Now we
consider the situation where an adversary compromises an IoT sensor. For instance,
it contains malicious code. This can happen if the seller is a bad actor. That is, a
bad guy, an adversary, modifies the IoT device by installing malicious code before
selling it on the internet to unsuspecting customers. In this scenario, we will consider
a typical Raspberry Pi device, which was compromised previously by a malware
script. Later, when the current owner tried to provision the device, it downloads and
launches a ransomware attack. Figure 4.11b shows the active ransomware running
in the raspberry device. The wireshark trace in Figure 4.11c shows that the malware
is active and connects to a ransomware site – ransomeware.com. After connecting to
the site, it tries to download the ransomware payload file – file.exe, which can then
be used to launch the ransomware attack.

http:/ransomeware.com
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Now, to mitigate such propagation of malware and stopping and detecting such
compromised devices, we will use the pre-conditioning policies in SDPM. To be
specific, we will be using the device state properties in the pre-conditioning policies.
This is an extension to the traditional way of provisioning the devices with just ID
and certificates. Such granular device state-specific policies give us more flexibility
to control the device, which helps mitigate attacks discussed in this scenario.

We have activated the SDPM services in our IoT network infrastructure. We have
policies associated with the device state of the Raspberry Pi devices. In this case, we
added the processes running in the Raspberry Pi devices as the state information in
the pre-condition policy. At first, the device gets its attributes by loading its device

Malicious New Device
IoT Sensor

Domain

IoT Hub

Cloud

Admin

An User Provisioning a

Newly Purchased

Device

SDPM

DPS

SDPM Running

with

Pre-condi on

Policies

Adversary

Phase 1: Infec ng Device with Malware

Malware
Malicious

Device

Online Store

Phase 2: Selling Malicious Device on

Online Store

Malicious

(a)

(b)

Figure 4.11 The figure describes the network setup for attack scenario 2. In this specific at-
tack, a device is infected with malware, and SDPM is monitoring its status change due to mal-
ware infection. (a) The schematic description of how the attack is conducted. (b) This figure
presents an active malware process inside a Raspberry Pi device. This malware is specifically
designed for the IoT devices.

(Continued)
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(c)

(d)

Figure 4.11 (Continued) (c) The malware will try to download a file called File.exe. The
figure presents the Wireshark trace for the infected device requesting file.exe. (d) The SDPM
raises an alert while it detects a change in the device’s internal state.

profile and then checks the pre-conditions. As the malware process and the network
request generated by the devices violate the state properties in the precondition poli-
cies, SDPM generates an ALERT. This leads to the cancellation of the provisioning
process (shown in Figure 4.11d).

4.6.2.2.3 Attack Scenario 3
Case study 5 & 6 are interlinked with each other. Here, in order to launch a MiTM
attack (Case 6), we have used ARP cache poisoning of host user/devices. The ARP
cache poisoning uses ARP spoofing (Case 5).
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These two attacks are typical of an insider attack in any IoT infrastructure, where
an employee sensor data for malicious purposes [42]. Firstly, we will present how the
attacks work, and then, we will show how our security architecture helps to protect
the network.

We have used one of the Raspberry VMs as an IoT device and have used a web-
server (IP: 192.168.56.101) to log the IoT data. The web-server has a dedicated user/-
password for the admin user and devices. In this case, it is: “admin/password”. The
IP address of the Kali Linux VM is 192.168.56.102. The adversary uses SDNPWN
Toolkit to poison the device/user ARP caches using arpspoof attack (Threat 3)
[36,47]. To poison the ARP cache, the adversary first sends a legitimate flow re-
quest to the controller to install a flow rule, which establishes a route to the victim
IoT device. Then, the adversary forges a gratuitous ARP request to poison the APR
cache of the IoT device. The adversary also poisons the ARP cache of another user.
The IoT device packets are rerouted through the malicious adversary. This essentially
allows the adversary to view, copy, and modify any instruction/data to or from the
IoT device. The adversary is also able to launch a MiTM attack (Case 6). Moreover,
it introduces the possibility of additional attacks such as SSL stripping and session
hijacking. Figure 4.12a shows a successful attack. The device ARP cache poison-
ing reroutes the device traffic through malicious adversary allowing him to capture
the log-in information to the Raspbian web-server. Hence, the adversary is able to
successfully launch an MiTM attack and capture the log-in details. Figure 4.12b
shows the administrator log-in request containing the login (“admin”) and password
(“password”) that have been captured.

With our proposed security architecture, each of the devices, as well as the user
machines, is securely provisioned before it is connected to the IoT infrastructure. An
adversary, who is not an insider, will not be able to bypass the authentication phase.
On the contrary, if the adversary is an insider and is able to pass the provisioning
phase, then the adversary will be restricted by the security policies in the network
flow authorisation phase using the PbSA module. Also, at the end of the authenti-
cation phase, each IoT device will establish a secret key, which is used to encrypt
its flows. This creates a secure channel which the IoT device can use to send the
credentials to the web-server. Hence, the adversary is unable to steal the credentials.
Figure 4.12c shows the attempted attack detected by our architecture.

4.6.3 PERFORMANCE EVALUATION

In this section, we will present some performance data for our proposed solution. We
classify the performance into two categories: system/application specific and device
specific.

Our proposed security architecture may cause delays in the provisioning and
functioning of the IoT devices. Hence, we present the following data: (i) Device
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(a)

(b)

(c)

Figure 4.12 (a) This image 7 in a the attack scenario. Here, node:h103 is the attacker ter-
minal and node:h101 and h102 are the victims of MiTM attack. Different IP allocated to the
same MAC address in the the victim terminal presents a successful MiTM attack. (b) A packet
capture from the adversary device presents the Admin/Password in bare form. (c) Our pro-
posed tool successfully detects the MiTM attack.

provisioning time delay, (ii) Throughput, (iii) Resource (CPU/ Memory) utilisation,
(iv) Device power consumption, and (v) Average path setup time.

We created a sample network with four hubs connected to the Azure cloud, and we
have provisioned some dummy devices with each hub during each experiment. In this
chapter, we focus only on the security issues of an IoT network infrastructure rather
than other performance characteristics. Hence, increases in delay time and increased
use of system resources are acceptable in the interests of increased security. Also,
measurements presented in this section are very context specific and may vary in
other environmental contexts.

i. Device provisioning time delay: Device provision time is the time required
to provision an IoT device into an IoT network infrastructure automatically.
This process consists of authentication, pairing, and authorisation processes.
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As we have enhanced the capabilities of the authentication procedure by in-
troducing pre-condition policies, there will be a slight delay in the overall de-
vice provisioning process. Figure 4.13a shows the provision time with chang-
ing the number of devices and the pre-condition policies associated with the
authentication process. We measured the device provisioning time without
SDPM, and we found that the provision time increases with the number of
devices. For 50 devices, it takes 138 seconds, and it increases to 581.7 sec-
onds with 200 devices. Now, after activating the SDPM security services, due
to processing check, the provision time increases. With 200 devices and 300
pre-condition policies, the provision time is 1477.9 seconds.

ii. Throughput: Figure 4.13b shows a comparison between throughput with
or without running the SDPM service for the IoT infrastructure. We varied
the number of post-condition policies and measured the network infrastruc-
ture throughput using iperf. The bar chart illustrates a decrease in throughput
with increasing post-condition policies. For example, with 300 policies, the
throughput is 430 Mbps (appro.). While without the SDPM, the throughput
is 840 Mbps(appro.).

iii. Resource (CPU/memory) utilisation: Figure 4.13c presents the system re-
sources consumed by the SDPM services while being active. Here, we fo-
cus only on CPU usages and heap memory usages to describe the system
resources usages. The resource utilisation is primarily dependent on the sys-
tem used and environmental context during the execution time. Hence, this is
not a standard representation rather a way of showing how a prototype sys-
tem behaves. Here, we have conducted the experiments 10 times and used
the average of the resources. The bar diagram shows that the CPU and heap
memory usage increases with the higher number of policies (both pre- and
post-conditions). With 400 policies, the CPU usages become 84%, and the
software utilised 1,120 MB of heap memory. On the contrary, without the
SDPM services running on the IoT network hubs, they utilise on an average
45% of the CPU and 129MB heap memory.

iv. Device power consumption: We present the device end-to-end average path
setup time (with varying OF-AP) and battery consumption of an active IoT
device. In Figure 4.13d with default applications running in the IoT infras-
tructure, the IoT device’s battery decreases steadily to 73% within an hour of
communication. With PbSA and ISA, the IoT device’s battery consumption
decreases steadily to 67% within an hour. The security mechanisms used in
the IoT devices consumes their battery power, which is visible in 4.13.

v. Average path setup time: The average path setup time between IoT devices
increases in both cases with the varying number of OF-AP (Figure 4.13e).
With ONOS default applications running, the average path setup time for 100
OF-AP is 330.66 ms, and it steadily increases to 2487.68 ms with 500 OF-
APs. On the contrary, PbSA and ISA running over the controller cause some
delays in path setup time. In this case, with 100 OF-AP, the average path setup
time is 349.76 ms, and it steadily increases to 2589.18 ms with 500 OF-AP.
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Figure 4.13 (a) The line chart presents the device provisioning time with varying number
of Pre-Condition Policy (PCP). Here, we see an increase in the device provision time with
increasing number of devices and PCP. (b) This bar chart presents the decrease in throughput
with the increase in PCP per device.
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Figure 4.13 (Continued) (c) This graph shows consumption of CPU and heap memory
resources while SDPM is active. (d) The figure presents a single simulated device’s power
consumption while using and/or interacting with the proposed security architecture. Our pro-
posed solution discharges the IoT device faster than the normal one.
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Figure 4.13 (Continued) (e) This figure presents the average path setup time between de-
vices. We have varied the access point numbers and collected the setup time.

4.7 DISCUSSION AND OPEN ISSUES
IoT devices are increasing day by day, and they are manufactured for domains or
a particular task. For instance, medical IoT devices try to help healthcare providers
achieve the body vitals of a patient. Each domain-specific IoT device comes with
its own protocols, network infrastructure, cloud application, security services, etc.
A flaw in any of these services and infrastructure can lead to disruption and leak-
age of personal and corporate information. In order to safeguard the devices and
network assets, we proposed this consolidated security architecture. Our primary
focus for this work is to securely provision the IoT devices and securely manage
programmable IoT network infrastructure. The proposed approach is different from
the works present in this research domain. Firstly, in addition to traditional device
authentication (while provisioning the device), we can introduce additional security
checks using the granular device and context-specific pre-condition policies. Sec-
ondly, the SDPM service in the security architecture has pre-condition policies to
cross-check the device operation during runtime (authorisation). The pre-condition
policies are created around the digital twin concept. We have created security feature-
focused digital twins, which allow us to check the security status of the provisioned
devices. Thirdly, we consider device state as one attribute for pre- and post-condition
policies. This allows the security architecture to check the device’s security status
both in the provision and runtime. For instance, whether the device is running a mal-
ware service or the device firmware is outdated. Fourthly, the security architecture
can block malicious devices from getting provisioned in the network infrastructure
and stop adversaries’ attacks. Finally, the security architecture uses granular security
policies to route IoT device flows securely. The security architecture provides on-
demand security services such as confidentiality and integrity to users and devices.
Table 4.1 shows a feature comparison between our work with [17,20,43,44].
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Table 4.1
Security Feature Comparison of SDPM

Additional Pre-condition Digital Twin Associated
Policy for Device Post-Condition Policy for Device State as Network Security

Features Authentication Device Authorisation a Policy Attribute Management Policies Attack Mitigation

Our Approach Yes Yes Yes Yes Yes
[17] No No No No No
[43] No No No No No
[44] No No Yes No No
[20] No No No No No
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Some open issues need some clear attention. Firstly, optimisation of security ser-
vices for IoT devices and associated network infrastructure. This includes efficient
and lightweight authentication and authorisation techniques for device provision.
These techniques may vary depending of the type of IoT device and network con-
figuration. Secondly, mass updates or patching of IoT devices is a significant con-
cern and needs some focus. Thirdly, policy conflict is prevalent in the policy-based
management system. Hence, it is an area that needs more exposure. Finally, future
programmable networks will introduce new vulnerabilities into IoT services. So, we
need to assess such avenues.

4.8 CONCLUSION
This chapter presents how policy-driven architectures can be used to manage and
provision IoT devices and network infrastructures securely. It also introduces stan-
dard policy-based security architecture and its components. Such standards help us
put security services and measures into the right environment. Here, we have added
policy-driven services to the IoT network infrastructure. We have introduced two
types of security services in this architecture: a policy-based secure provisioning ser-
vice for onboarding IoT devices and a policy-based security application for secure
IoT network infrastructure management.

The first security service is named SDPM, a policy-based approach for the secure
provisioning of IoT devices. Here, we have presented SDPM service that can auto-
mate secure provisioning of IoT devices using cloud infrastructure. SDPM utilises
pre- and post-condition policies related to sensor and actuator attributes and device
state properties, which can be used to enforce specific security constraints while pro-
visioning devices. They can also use device adapter-specific policies. The primary
purpose of such device adapters is to extract and provision sensor data to IoT ap-
plications and to receive control commands from them. The proposed approach can
be extended to include policies for device adapters specifying what sort of com-
munications and what type of scripts are allowed for a device or a set of devices.
For instance, this can include policies specifying access to either specific hosts and
applications for cloud-based services or even certain classes for access within an op-
erational network. An example of a class policy might be to “allow access to devices
of the same manufacturer”. We can also have policies on the type of communica-
tion protocols that are allowed for a device or set of devices at a certain location.
For instance, “devices located in a specific domain should only communicate with
IPSec”. The SDPM service uses a digital twin representation of a device to reflect the
security state of the devices during runtime. We create the digital twin of a device
using the device information and devices/user/environmental context information.
The SDPM has policies associated with such context attributes. This digital twin
representation of the device can then be synchronised with the physical device. This
will provide a starting point for secure monitoring of the health of the devices us-
ing cloud-based security applications. The digital representations help the users to
get feedback about misbehaving or faulty devices in the environment. Furthermore,
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we developed a prototype application for SDPM using Microsoft Azure. This cloud-
based security application enables secure access to sensor data of devices and secure
control of the devices, allowing precise control over the smart infrastructure. Both
pull-based and push-based approaches can be done. Here, we use a pull-based ap-
proach, where SDPM actively retrieves sensor data based on a send/request model.

A policy-based security application is another policy-driven security service that
we have introduced as part of the security architecture. The PbSA helps to secure
the IoT network infrastructure. This application provides two major benefits: firstly,
to secure the network assets from potential compromises, and secondly, to provide
on-demand security services to IoT devices and user flows. For example, a medical
IoT device sending privacy critical information to the cloud demands confidentiality
services.

We present a prototype implementation of the security architecture using Mi-
crosoft Azure and SDN controllers. We tested the proposed SDPM and PbSA ser-
vices against some well-known attacks and demonstrated the outcome. The proposed
approach applies to provisioning IoT devices and management of IoT network infras-
tructure in various applications such as agricultural farm, healthcare, and smart home
environments.
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5.1 INTRODUCTION

According to the International Data Corporation (IDC), “IoT spending will increase
by a compound annual growth rate (CAGR) of 13.6% from 2017 to 2022, reach-
ing $1.2 trillion within the next four years”.1 In line with IDC figures, “A research
published by Transforma Insights revealed that the number of active IoT devices
globally is expected to grow from 7.6 billion in 2019 to 24.1 billion in 2030”.2

Despite the popularity of the Internet of Things (IoT) among the information and
communication technologies (ICT) community, different challenges still persist un-
dermining this popularity among other things. Our personal list of challenges in-
cludes diversity and multiplicity of things’ development and communication tech-
nologies [16], users’ reluctance, and sometimes rejection because of privacy invasion
that things cause [24,35], limited IoT-platform interoperability [11], lack of killer
applications that would justify the existence of things [30], lack of an IoT-oriented
software engineering discipline that would guide the analysis, design, and develop-
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ment of things [21,49], and, finally, passive nature of things that primarily act as data
suppliers (with some actuating capabilities) [18,37]. For more challenges, readers
could refer to Refs. [22,39].

Over the years, we tackled some of the challenges above through initiatives re-
lated to federation-of-things [31], cognitive things [32], process-of-things [33], and
quality-of-things model [40]. In this chapter, we tackle the particular challenge of
privacy invasion that becomes acute when compounded with security concerns [1];
connected devices/things can give hackers and cyber-criminals more entry points.3

When it comes to privacy, IoT exemplifies Mark Weiser’s definition of ubiquitous
computing when he states in 1999 that “The most profound technologies are those
that disappear. They weave themselves into the fabric of everyday life until they are
indistinguishable from it” [45]. Whether visible or invisible, today’s things like ther-
mal cameras, motion sensors, and wrist watches collect a plethora of details about
persons’ (and even about other things) habits, practices, preferences, and choices.
For Ziegeldorf et al., “the increasingly invisible, dense and pervasive collection,
processing and dissemination of data in the midst of people’s private lives gives
rise to serious privacy concerns. Ignorance of those issues can have undesired con-
sequences” [24]. While the collection, processing, and distribution of details about
users could be subject to strict approvals, seeking approval for every single detail and
continuously would become cumbersome and over time inefficient due, sometimes,
to people’s “easy-going” nature. In addition, the lack of a systematic method for inte-
grating privacy into IoT applications’ development life cycle is exacerbating privacy
as per Perera et al. who suggest privacy-by-design framework [14]. Completely dif-
ferent from such a framework that suggests how to minimize data acquisition and en-
crypt data storage that are independent from things, we directly act upon things’ de-
scriptions from a contextual perspective resulting into a better control of what things
can do versus cannot do, so that users’ privacy is preserved. To achieve this control,
we define the necessary metamodels that would describe things and their operations,
capture privacy concerns, relate these concerns to user situations, and allow/disal-
low these operations according to these situations. Based on these metamodels, we
generate a privacy-sensitive, situation-aware thing description metamodel in com-
pliance with model-driven architecture (MDA, [41]) that is known for its capability
of supporting metamodel/model separation and transformation. Our objectives are,
first, to inject privacy-driven contextual elements into a thing’s description and, sec-
ond, to transform the injected thing’s description into a specific implementation that
would accommodate the thing’s technical specification. For illustration purposes, the
Web-of-Things (WoT) Thing Description (TD) is used to describe things and will be
adjusted to ensure the awareness of things to privacy concerns.

To achieve a context-driven invasion of privacy (in the sense of a controlled in-
vasion that would comply with the privacy definition of Westin, “the right to select
what personal information about me is known to what people” [46]), we propose
an MDA compliant approach of three stages. In stage 1, we define SituationPri-
vacy metamodel to abstract the key concepts of privacy, situation, and operation.
In stage 2, we use SituationPrivacy to transform WoT TD metamodel into a privacy-
sensitive, situation-aware WoT TD metamodel. Finally, in stage 3, we automati-
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cally generate a privacy-sensitive, situation-aware WoT TD model using a set of
transformation rules that we apply to a case study about elderly people in a care
center. Our contributions include, but not limited to, (i) MDA weaving into IoT to
preserve privacy, (ii) development of necessary metamodels and models in compli-
ance with MDA, (iii) enrichment of WoT TD to develop things that are sensitive
to privacy and aware of situations, and (iv) a system demonstrating the technical
doability of MDA weaving into IoT. While WoT TD illustrates our approach, the
solutions put forward in this chapter could be integrated into other thing specifica-
tions like IoT-DDL [28], CoRE-TD [17], WoT-AD [29], and O-DF4 (though these
specifications’ descriptions remain restricted to research projects). The rest of this
chapter is organized as follows. Section 5.2 discusses privacy and MDA in IoT and,
then, presents a case study. Sections 5.3 and 5.4 are dedicated to the approach for
designing, developing, and demonstrating privacy-sensitive, situation-aware things.
Section 5.5 concludes the chapter and identifies future research directions.

5.2 BACKGROUND
This section discusses privacy in IoT, examines the synergy between MDA and IoT,
provides an overview of WoT TD, and, finally, suggests a case study that will be used
throughout the chapter to illustrate how things would end up sensitive to privacy and
aware of situations.

5.2.1 PRIVACY IN IoT IN-BRIEF

Although privacy is a recurrent concern in the ICT community, it becomes acute in
the IoT since things are “invited” to be part of our lives. According to Orman [38],
“The things in the Internet of Things (IoT) can get personal. They can be in your
home, your car, and your body. They can make your living and working space smart,
and they can be dangerous to your health, safety, and liberty ... Is our future a brave
new world or a dystopian nightmare? Who decides?” On top of users’ approvals to
let things be part of their lives [44] and the inappropriateness of existing privacy-
preserving techniques like k-anonymity and secure multi-party computation for in-
dustrial IoT [12], many device manufacturers exacerbate the privacy concern when
they suspend or stop upgrading their devices in response to specific threats that would
impact users’ privacy [23]. This sporadic and discontinued upgrade gives intruders
sufficient time to crack security protocols and access private data.

Compounded to device manufacturers’ passiveness, organizations including gov-
ernments are sometimes unable to enforce their own privacy policies in response to
specific regulatory demands like disclosing airline passenger details [10,13]. It be-
comes quite impossible to predict all possible privacy violation scenarios despite the
goodwill of organizations and technical solutions to preserve users’ privacy. Briefly,
these solutions could either be split into access control and blockchain-based [48]
or refer to intrusion detection systems [20]. The former rely on encryption where
either access policies or associated attributes are kept secret, and the latter guarantee
integrity and privacy of sensitive data where only authenticated recipients decrypt
authorized transactional details.
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5.2.2 DEFINITIONS

5.2.2.1 Internet of Things
A comprehensive guide about IoT has been released by the DZone group
in 2017 [18]. The guide covers various aspects relevant for IoT such as privacy, big
data, monitoring, context, and architecture. In Ref. [4], Barnaghi and Sheth provide a
good overview of IoT requirements and challenges. Requirements include quality, la-
tency, trust, availability, reliability, and continuity that should impact efficient access
and use of IoT data and services. And, challenges result from today’s IoT ecosystems
featuring billions of dynamic things and thus making existing search, discovery, and
access techniques and solutions inappropriate for IoT data and services. In Ref. [2],
Abdmeziem et al. discuss IoT characteristics and enabling technologies. Characteris-
tics include distribution, interoperability, scalability, resource scarcity, and security,
while enabling technologies include sensing, communication, and actuating. These
technologies are mapped onto a three-layer IoT architecture consisting of perception,
network, and application, respectively.

5.2.2.2 Model-Driven Architecture
Different studies discuss MDA for system design and development [3,9,19,47]. The
complete design model of an application comprises multiple models offering each a
different viewpoint of the application. For instance, UML offers models ranging from
use-case and class diagrams to deployment diagrams, which are used depending on
the objectives to achieve. In MDA, the emphasis is on designing detailed models
and platform independent specifications. For Backx, MDA addresses the migration
problems between computing platforms, which are prone to errors and time consum-
ing [3]. By having models that are language and platform independent, same models
can be applied to different scenarios. To ensure the acceptance of MDA, the following
models are produced: Computation independent model (CIM) for business require-
ments (or business model), platform independent model (PIM) for system function-
alities, and platform-specific model (PSM) for platform-specific details. Initially, the
design work starts with preparing a CIM that will be mapped onto a PIM. This one
is the starting point of deriving a PSM according to the characteristics of the target
platform using specific Model-2-Model (M2M) transformation rules. Finally, a tool
uses the PSM to generate the complete code of the future system.

5.2.3 WHEN MDA MEETS IoT

In Ref. [26], Im et al. adopt MDA to design and develop an IoT mashup-as-a-
service (MaaS). The authors expose things as services so they can tap into existing
solutions and technologies for service mashup like those discussed in Refs. [8,34].
IoT mashup consists of composing three models referred to as thing model, software
model, and computational-resource model. Along with these three models, Im et al.
describe things using first, a PIM to address heterogeneity across things and second,
a PSM once a thing implementation technology is agreed upon.
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In Ref. [42], Sosa-Reyn et al. present a method based on model-driven engineer-
ing (MDE) to design and develop IoT applications. They characterize things, whether
physical or virtual, with identities, physical attributes, and virtual personalities that
have pervasive sensing, detection, actuation, and computational capabilities. Thanks
to MDE’s abstraction and granularity levels, different models are designed and trans-
formed until the necessary code of future IoT applications is generated. In conjunc-
tion with MDE, Sosa-Reyn et al. adopt service-oriented architecture (SOA) to pro-
pose an architecture of four layers, namely, object, network, service, and application.
Sosa-Reyn et al.’s MDE-based method includes four phases, namely, analysis of busi-
ness requirements (using UML’s use-case and activity diagrams in compliance with
PIM principles), definition of business logic (using BPMN language in compliance
with PIM principles again), design of integrated services solution, and generation of
technological solution (using a particular implementation technology in compliance
with PSM principles).

In Ref. [43], Thang Nguyen et al. present a Framework for sensor application
development (FRASAD) by adopting MDA principles to address the complexity of
developing such applications. FRASAD adopts a node-centric software architecture
and a rule-based programming model allowing both to obtain code applications
through a set of automatic model transformation steps. FRASAD’s architecture in-
cludes five layers, namely, application, operating system abstraction, operating sys-
tem, hardware abstraction, and hardware, allowing to transform an application model
into an equivalent final platform specific-application. Thang Nguyen et al. associate
FRASAD with a graphical user interface to describe IoT applications using a domain-
specific language.

In Ref. [15], Ciccozzi and Spalazzese introduce MDE4IoT standing for model-
driven engineering for internet of things. MDE4IoT allows the modeling of things
along with supporting their self-adaptation in the context of emergent configurations
that capture the temporary cooperation and connection between things. Temporary
because things might become unavailable due to physical mobility or insufficiency
battery level or even battery problems. Should this be the case, run-time management
of emergent configurations would be necessary by ensuring that things’ software
functionalities would be abstracted away from platform-specific details. MDE4IoT
helps achieve this abstraction, so that executable artifacts are generated.

In Ref. [6], Berrouyne et al. use the acronym AAA for anything, anytime, and
anywhere to define IoT and discuss the challenges of achieving interoperability in
IoT. Although things are by nature heterogeneous, they are expected to work to-
gether to provide value-added services to users. Berrouyne et al. suggest MDE to ad-
dress thing heterogeneity that could happen at different levels such as functionality,
programming, and communication. Atlas transformation language (ATL, [27])-based
M2M transformation was adopted allowing, for instance, to adapt models of things’
behaviors according to models of networks allowing a certain form of compatibility
between things and networks.

Although the afore-mentioned works offer a sample of mixing MDA and IoT to-
gether, there is a gap in both examining privacy in IoT and taping into MDA to ad-
dress this gap. We embrace MDA’s principles and mechanisms to ensure that things’
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descriptions are sensitive to users’ privacy concerns and accommodate measures that
address these concerns.

5.2.4 WoT TD IN-BRIEF

As stated in Section 5.1, we use WoT TD5 for describing things. WoT TD represents
a central building block in the W3C Web of Things (WoT) and can be considered as
a thing’s entry point. A thing is an abstraction of either a physical or a virtual entity
whose metadata and interfaces are described by a WoT TD. The WoT TD conceptual
model is built upon four parts referred to as Vocabulary having each a namespace:
(i) core TD Vocabulary defines the interaction model, (ii) Data Schema Vocabulary
describes a common subset of the terms defined in a JSON Schema, (iii) WoT Security
Vocabulary identifies the configuration of the security mechanisms, and (iv) Hyper-
media Controls Vocabulary provides a representation for Web links and Web forms
that a Thing exposes to potential end-users.

Figure 5.1 is an excerpt of WoT TD metamodel prior to any adjustment that would
address the particular concern of privacy. We focus on WoT TD’s elements that cor-
respond to the main meta-classes of core TD Vocabulary along with the meta-classes
(shown in gray) of the three other independent vocabularies of WoT TD that are
DataSchema meta-class for Data Schema Vocabulary, SecurityScheme meta-class
for WoT Security Vocabulary, and Form & Link meta-classes for Hypermedia Con-
trols Vocabulary. Still in Figure 5.1, thing offers three choices of InteractionAffor-
dance that show how end-users and/or peers could interact with a thing: Properties
of type PropertyAffordance, Actions of type ActionAffordance, and Events of type
EventAffordance. Properties allows to sense and control parameters, Actions corre-
sponds to a thing’s operations, and Events allows to asynchronously push communi-
cations such as notifications, discrete events, and streams of values to receivers.

Figure 5.1 Excerpt of the initial WoT TD metamodel diagram.
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Listing 5.1 Excerpt of WoT TD Specification of Lamp
1{
2 "@context": "https://www.w3.org/2019/wot/td/v1",
3 "id": "urn:dev:ops:32473-WoTLamp -1234",
4 "title": "MyLampThing",
5 "securityDefinitions": {
6 "basic_sc": {"scheme": "basic", "in":"header"}},
7 "security": ["basic_sc"],
8 "properties": {
9 "status": {

10 "type": "string",
11 "forms": [{"href": "https:// mylamp.example.com/status"}]}
12 },
13 "actions": {
14 "toggle": {
15 "forms": [{"href": "https:// mylamp.example.com/toggle"}]}
16 },
17 "events": {
18 "overheating": {
19 "data": {"type": "string"},
20 "forms": [{
21 "href": "https:// mylamp.example.com/oh",
22 "subprotocol": "longpoll"}]}
23 }
24}

Listing 5.1 shows a WoT TD instance of a lamp Thing referred to as My-
LampThing. Thanks to this description, we know that there exists one property affor-
dance with the title status (line 9), an action affordance is specified to toggle (line 14)
the switch status, and an Event affordance known as overheating (line 18) that en-
ables a mechanism for asynchronous messages to be sent by a thing. The listing
also specifies a basic security scheme requiring username and password for ac-
cess (line 7).

5.2.5 CASE STUDY

With the latest ICT advances, many personal details about people are collected from
different sources and afterward shared without seriously asking who will receive
and process these details and for what purposes like understanding people’s habits,
movements, and even feelings [50]. Our case study sheds light on privacy in elderly
care centers. Many studies confirm that population aging is a dominant global demo-
graphic trend of the 21st century.6 Despite the benefits of monitoring the patients of
these centers, a good number of privacy concerns can be identified.

According to Ref. [25], the five most important smart tech-devices for senior
safety7 include smart home hub, smart home sensors, smart lights, smart medication
dispensers (SMD), and smart stove shutoff. Let us consider the situation where a cen-
ter’s patients get together every Thursday’s afternoon to watch movies in the living
room. Each patient is expected to have her own SMD when she is not in her room.
Prior to the viewing session, the smart TV synchronizes with all attendees’ dispensers
so that reminders are displayed on the screen and, if required, alerts are sent to the
medical staff. While this synchronization is mandatory, patients’ and medicines’ de-
tails could be used by third parties to develop targeted healthcare awareness cam-
paigns for these patients making them subscribe to new programs. In Ref. [5],

https://www.w3.org
https://mylamp.example.com
https://mylamp.example.com
https://mylamp.example.com
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Table 5.1
High-Level Specification of Some Smart Devices in the Case Study

Type Operation Description

Smart Medication Dispenser change Modify the intake frequency per type of pill
Configure Select the container per type of pill
Dispense Release a pill in a container and blink lights
Display Notify availability of pills on the TV screen
Refill Request for more pills

Smart TV Display Enable programs for viewing
Record Tape ongoing programs
Trigger Initiate voice control
Share Send details to the cable TV company

Belhajjame et al. shed light on cases where combining medicines’ names could be
used to infer some diseases and hence insisted on data privacy.

To mitigate privacy concerns, the SMDs, smart TV, and other devices could auto-
matically have their specifications (Table 5.1) adjusted according to some details like
living room, Thursday’s afternoon, and medicines’ dosages in the afternoon. How to
ensure that the dispensers’ reminders displayed on the smart TV will not be relayed
to the cable TV company? Which operations of the SMD should be temporarily
disabled without impacting the viewing experience (e.g., TV’s subtitling remains en-
abled) nor risking the safety of patients (e.g., SMD’s alarm remains enabled too)?
And, how to ensure that pairing SMDs with patients’ mobile phones will not expose
their personal contacts to these SMDs’ vendors? There are some questions that we
raise and address in the rest of this chapter.

5.3 PRIVACY-SENSITIVE AND SITUATION-AWARE THING
DESCRIPTION

This section discusses how our approach acts upon the descriptions of things, so
that, things become sensitive to privacy and aware of situations/contexts. After an
overview of the approach’s three steps, the remaining sections detail each step in
terms of objectives to achieve, actions to perform, and techniques to adopt.

5.3.1 OVERVIEW

Figure 5.2 illustrates the levels and transformations allowing to inject situation-based
privacy details into things’ descriptions like WoT TD. This injection happens in
compliance with, first, the object management group (OMG)’s guidelines that sep-
arate conceptual and technical details of a system’s operations [36] and, second,
the MDA’s guidelines for model transformations [7]. First, the levels in this fig-
ure host models, metamodels, and meta-metamodels and ensure the instantiation
of meta-metamodels into metamodels and then, metamodels into models. Second,
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Figure 5.2 Levels and transformations for black developing privacy-sensitive, situation-
aware thing descriptions (adapted from [7]).

the transformations convert privacy-insensitive, situation-unaware thing descriptions
into privacy-sensitive, situation-aware thing descriptions. To accommodate all these
models and transformations, our approach runs through three steps:

– Step 1 is manually completed and taps into the content of Section 5.2.1 along
with our own understanding of the concepts revolving around privacy like
thing, situation, and operation. The objective of this step is to define the neces-
sary constructs of the future SituationPrivacy metamodel that will fall into the
source metamodels box in Figure 5.2.

– Step 2 is manually completed as well and examines potential connections/over-
laps between the constructs of SituationPrivacy obtained in Step 1 and the
constructs of WoT TD metamodels. The objective of this Step 2 is to define
the necessary constructs of the future SituationPrivacyWoTTD metamodel that
will fall into the target metamodel box in Figure 5.2.

– Step 3 is automatically completed requiring the development of rules in, for
instance, ATL [27] to transform the source metamodels’ constructs defined in
Step 1 into the target metamodel’s constructs defined in Step 2. The objective
of Step 3 is to implement these rules through an engine in order to define the
necessary constructs of the future SituationPrivacyWoTTD model that will fall
into the target model box in Figure 5.2.

5.3.2 STEP 1: SITUATIONPRIVACY METAMODEL DEFINITION

This step develops a dedicated metamodel, SituationPrivacy, whose constructs
would capture users’ privacy concerns according to the situations in which these con-
cerns could arise. This metamodel shown in Figure 5.3 consists of 7 meta-classes,
SituationPrivacyThing, Situation, Privacy, Operation, PrivacyRequirement, Situa-
tionProperties, and PropertyComposition, and several meta-relations between these
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Figure 5.3 SituationPrivacy metamodel diagram.

meta-classes. First, SituationPrivacyThing meta-class abstracts concrete things like
SMD and smart TV that reside in a user’s cyber-physical space. This space is rep-
resented with a meta-class that is situation. At runtime, things participate in real
situations so that they track changes in these situations’ details such as time, loca-
tion, and preferences. From a meta-modeling perspective, we abstract these details
with SituationProperties and PropertyComposition meta-classes. Second, the oper-
ations that a thing uses to manipulate details about situations are abstracted with
operation meta-class. The four possible operations that are deemed relevant for
examining privacy in IoT are collect, process, store, and transfer and are associ-
ated with OperationType meta-attribute. Third, during detail manipulation, privacy
concerns could arise like collecting details without approvals and transferring de-
tails to unauthorized third parties. We map privacy concerns onto Privacy meta-class
that consists of requirements and actions represented with PrivacyRequirement and
Operation meta-classes, respectively. The former meta-class refers to some opera-
tion types (defined through OperationType enumeration) that are associated with
some details about a situation and the thing that should satisfy a particular require-
ment constraining the manipulation of these details. Back to the elderly care center
(Table 5.1), an example of requirement would be to disable the operation of sharing
(corresponding to an instance of requirementOperation meta-attribute with trans-
ferData as a data type) medicines’ names and dosages values, should the current
situation indicate the living room, during week end, and the smart TV executing the
display operation.
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5.3.3 STEP 2: SITUATIONPRIVACYWoTTD METAMODEL DEFINITION

This step makes things sensitive to privacy and aware of situations. To this end, we
examine how some meta-classes in SituationPrivacy metamodel of Figure 5.3 could
connect/overlap with other meta-classes in WoT TD metamodel of Figure 5.1. The
result is SituationPrivacyWoTTD metamodel as per Figure 5.4 and is made possible
because WoT TD can accept contextual knowledge from other namespaces using
TD context. This allows to enrich TD instances with additional semantics that could
be domain specific and to import additional schemes like protocol bindings and new
security, if deemed necessary.

In Figure 5.4, ActionAffordance meta-class, originating from WoT TD meta-
model, is a cornerstone in SituationPrivacyWoTTD metamodel by connecting to
Operation and PrivacyRequirement meta-classes, both originating from Situation-
Privacy metamodel. While ActionAffordance:Operation connection sets the ac-
tions that would empower a thing with respect to a user situation, ActionAffor-
dance:PrivacyRequirement connection permits to either enable or disable these
actions according to this user situation’s requirements. More details about en-
able/disable are given in Section 5.3.4. Finally, in Figure 5.4, Thing meta-class,
originating from WoT TD metamodel, inherits from SituationPrivacyThing, orig-
inating from SituationPrivacy metamodel, so that the binding between Thing and
Situation meta-classes happens. Finally, PropertyAffordance meta-class, originating
from WoT TD metamodel, inherits from SituationProperties meta-class, originating
from SituationPrivacy metamodel, to ensure that some details reported in Situation
meta-class, originating from SituationPrivacy metamodel, remain private.

Figure 5.4 Excerpt of SituationPrivacyWoTTD metamodel diagram.
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5.3.4 STEP 3: SITUATIONPRIVACYWoTTD MODEL GENERATION

To automatically generate SituationPrivacyWoTTD models that would be conform to
SituationPrivacyWoTTD metamodel, we, as per Figure 5.2, defined model transfor-
mation and then developed a set of ATL rules that are submitted to a transformation
engine.

In Figure 5.5’s right panel, labeled as WoTT2SPWoTTD and corresponding to
model transformation, a set of rules are listed. Thing2Thing converts each element
of Thing meta-class in WoT TD metamodel into an element of Thing meta-class
in SituationPrivacyWoTTD metamodel. And, Action2Action detailed in Listing 5.2
integrates privacy into action after converting each element of ActionAffordance
meta-class in WoT TD metamodel (lines 6-16) into an element of ActionAffordance
meta-class in SituationPrivacyWoTTD metamodel. As a result, a new disableAction
element (lines 17–19) links ActionAffordance to Privacy (originating from Situa-
tionPrivacy metamodel) in SituationPrivacyWoTTD metamodel. This new element
indicates that an operation will be disabled because of a particular situation where the
privacy of some details needs to be maintained. More technical details about model
transformation are given in the next section.

5.4 IMPLEMENTATION

This section discusses the efforts that were put into verifying the technical doability
of our MDA approach for making things sensitive to privacy and aware of situations.
The section starts with model transformation and then presents how the case study
was simulated and evaluated.

Figure 5.5 Specification of model transformation.
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Listing 5.2 ATL Definition of Action2Action Rule
1 rule Action2Action {
2 from
3 s : TD!ActionAffordance(s.oclIsTypeOf(TD!ActionAffordance))
4 to
5 t : SPWoTTD!ActionAffordance (
6 id <- s.id,
7 ititle <- s.ititle,
8 ititles <- s.ititles,
9 idescription <- s.idescription,

10 idescriptions <- s.idescription,
11 forms <- s.forms,
12 uriVariable <- s.uriVariable,
13 input <- s.input,
14 output <- s.output,
15 safe <- s.safe,
16 idempotent <- s.idempotent,
17 disableAction <- SP!Privacy.allInstancesFrom(’IN1’) ->
18 select (o|o.operationAssignement.operationName=s.id) ->
19 collect(o|o.constraintAssignement))
20 }

5.4.1 MODEL TRANSFORMATION

To perform WoTT2SPWoTTD model transformation, we used Eclipse 4.12 IDE
after enhancement with many modeling plug-ins such as eclipse modeling frame-
work (EMF)8 for developing metamodels and models, ATL IDE for transforming
models, and EMF client platform (ECP) for building EMF-based client applications.
We built an EMF project, imported WoT TD metamodel9 into this project, and, then,
created SituationPrivacy metamodel. The latter refines WoT TD metamodel in order
to create SituationPrivacyWoTTD metamodel (Figure 5.2). Based on these different
metamodels, we developed an application that creates customized SituationPrivacy
and WoT TD models for things. For instance, Figure 5.6 is the result of customizing
the SMD’s SituationPrivacy model. It describes situations where the SMD needs to
keep some details private. Should the display operation be invoked in the context
of a situation like living room, then medicines’ names stored in a smart medication
dispenser and/or phone contacts stored in a mobile phone should be kept private.

We now describe how WoTT2SPWoTTD model transformation was applied to the
case study with focus on the SMD where its initial WoT TD specification is given in
Appendix 1/Listing 5.4 (excluding lines 9 and 51–101). After defining the necessary
WoTT2SPWoTTD model transformation, we submitted it to the ATL transforma-
tion engine that automatically generated the SMD’s SituationPrivacyWoTTD model
(Figure 5.7 with focus on the red frame for the SMD’s privacy requirements when
display is executed). This has required setting up (i) an ATL engine configuration for
the WoTT2SPWoTTD model transformation; (ii) the input and output metamod-
els, namely, WoT TD, SituationPrivacy, and SituationPrivacyWoTTD; and finally
(iii) the input models, namely, the SMD’s WoT TD and SituationPrivacy models
related to the SMD’s WoT TD in Figure 5.6. It is worth noting that our privacy-
sensitive, situation-aware SMD SituationPrivacyWoTTD is not dependent on any
particular representation format like we do in Figure 5.7 using XMI. A similar repre-
sentation in JSON-LD is also given in Appendix 1/Listing 5.4.
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Figure 5.6 Creation of SituationPrivacy model of the smart medication dispenser.

Figure 5.7 SituationPrivacyWoTTD model of the smart medical dispenser.
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5.4.2 SIMULATION

For a complete simulation of the case study, more tools have been used, for in-
stance, Thingweb Node-WoT,10 Node-Red,11 Node-red-contrib-web-of-things,12

and Node-generator.13 First, Thingweb Node-WoT is a WoT TD parser that cre-
ates WoT applications based on a set of IoT resources exposed as web resources.
Thingweb Node-WoT uses what is called Servient that could simultaneously act as
a server and client according to future WoT applications’ needs and requirements.
Second, the rest of tools permit to wire things together using interaction flows and
visualize these flows. Briefly, Node-Red is a visual tool based on flow-based pro-
gramming paradigm largely used for developing IoT applications in terms of nodes
and flows. In conjunction with Node-Red, Node-generator and Node-red-contrib-
web-of-things use TD to generate WoT client nodes. We carried out the develop-
ment and experiments on a Lenovo Thinkpad with Core(TM) i7-8665U (4 Cores,
8 Threads, 8 MB Cache) processor, 16 GB RAM, and 64 bits Windows 10.

Based on the high-level specification of some of the case study’s smart devices
mentioned in Table 5.1 along with some functional requirements that we set like
reminding patients about their medicines and alerting the medical staff, we used
Thingweb Node-WoT to create 2 Servients associated with three TDs, namely,
SMD1, SMD2, and smart TV (Figure 5.8). Only SMD1’s TD was made sensitive
to privacy without altering its regular workflow. Whenever a patient’s SMD clock
matches her medicine’s intake time, an action known as dispense is triggered setting
the right quantity of pills as per the patient’s prescription. This match also leads to
triggering the display action allowing to send necessary messages to the smart TV
for display.

Figure 5.8 Servient definition using Thingweb Node-WoT.
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By making SMD1’s display action sensitive to privacy thanks to disableAction
(e.g., Appendix 1/Listing 5.4-line 51), a set of privacy requirements had to be defined
(e.g., Appendix 1/Listing 5.4 lines 54-82) and associated with a JavaScript (JS) ob-
ject that is conform to SituationPrivacy vocabulary. In this listing, transfer-
Data operation-type indicates that SMD1 is not allowed to share details like medicine
name, drug dosage, and medicine type with the smart TV. Contrarily, other operation-
types like collectData and storeData, not shown in the listing, indicate that SMD1 is
not this time allowed to self-collect and self-store these details.

In addition to Appendix 1/Listing 5.4, we show in Figure 5.9 an excerpt of the
code associated with the privacy requirements on disableAction element. When the
display action is triggered in SMD1, this latter scans the privacy requirements that
would identify which details must be kept private (Figure 5.9-line 8) based on the
current situation like “afternoon,” “weekend,” “being in the living room” (Figure 5.9-
lines 9–11), and according to the operation type (Figure 5.9-lines 14–15). Afterward,
SMD1 sends the smart TV the non-private details, while the private ones are replaced
with N/A (not available) value. These interactions between SMD1 and the smart TV
and other interactions with SMD2 are captured thanks to Node-Red (Figure 5.10)
and different messages (Figure 5.11).

5.4.3 EVALUATION

We proceeded with three stages targeting SMD2 once and SMD1 twice (Table 5.2).
While 1, 5, and 10 instances of SMD2 were under execution separately, we recorded
the best and worst response times and calculated the average after 10 dispenses. Re-
garding SMD1, we took into account the number of privacy requirements included
in the display action. We started with 1 privacy requirement like in Appendix 1/
Listing 5.4 (lines 53–81) and then 20 privacy requirements. Table 5.2 indicates that
the average response-time related to 1 privacy requirement in SMD1 was under one-
tenth of a second, and even after running 10 SMD1s on a single Servient, the average

Figure 5.9 Excerpt of the code associated with disableAction.
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Figure 5.10 Partial representation of SMD1’s interaction flow in Node-Red.

Figure 5.11 Examples of messages that SMD1, SMD2, and the smart TV produce.

Table 5.2
SMDs’ Response Times in Milliseconds

Number of SMD2 Number of SMD1 Number of SMD1
(1 privacy requirement ) (20 privacy requirements )

Cases 1 5 10 1 5 10 1 5 10

Best of 10 38 87 124 95 188 197 962 1,294 3,166
Worst of 10 132 255 484 189 657 1,115 1,185 6,216 19,270
Average 81 108 225 139 358 462 1,104 3,068 10,389
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was slightly over two-tenths. Although with SMD1, the average response-time sur-
passed 10s and in some cases, it reached 20s when running 10 SMD1s on a single
Servient with 20 privacy requirements. The results with either few SMD1s or fewer
privacy requirements show that the privacy inclusion process has a limited impact on
the system’s performance. In fact, the computational-time overhead can be negligi-
ble. Even with 20 privacy requirements, a stand-alone SMD1 responds in just over
a second. And, if the number of privacy requirements is small, the response time is
very close to the one of SMD2.

Because a thing’s TD instance can usually be hosted by the thing itself or exter-
nally in the case of limited storage capacities or when a Web of Things-compatible
legacy device is retrofitted with a TD, we examined the worst-case scenarios where
the privacy requirements per action could potentially reach 20 and exposed multiple
TDs (up to 20) through one Servient, only, instead of many we concluded from the
results, especially when the number of exposed TDs does not exceed 5, that the re-
sponse time is very reasonable (i.e., “few seconds”) even when the number of privacy
requirements is very high.

5.5 CONCLUSION
Prior to concluding, we discuss how the questions (at least some) we raised when
presenting the case study about the elderly center are addressed. These questions
are how to ensure that the SMDs’ reminders displayed on the smart TV will not
be relayed to the cable TV company, which operations of an SMD should be tem-
porarily disabled without impacting the viewing experience nor risking the safety of
patients, and how to ensure that pairing of SMDs with patients’ mobile phones will
not expose these patients’ personal contacts to these SMDs’ vendors? First, we pre-
vented the smart TV from relaying private details like patients’ names by disabling
the share operation in its WoT TD specification. Second, disabling the SMD’ oper-
ations like refill and configure will not impact the viewing experience. Finally, the
pairing will not let mobile phones access personal contacts of the SMDs’ owners.
All these adjustments are carried out because of the current situation of the elderly
center’s guests watching movies in the living room during weekends.

Despite IoT’s bright side exemplified with many benefits, some persistent con-
cerns are undermining these benefits with focus on privacy invasion that things could
cause to users. This invasion’s consequences could lead to identifying, tracking, and
profiling users [24]. Whether invisible or visible, things collect details about persons
sometimes without their knowledge/approvals. This collection is associated with op-
erations that things execute and are part of things’ descriptions. To mitigate privacy
invasion, we advocated for reviewing descriptions of things in a way that operations
are either enabled or disabled according to specific situational elements (context).
To achieve this mitigation, we took three actions. The first action consisted of de-
signing and developing an MDA-based approach. The second action consisted of
using WoT TD to exemplify things’ descriptions. Finally, the third action consisted
of using an elderly care center as a case study to illustrate both the approach and
the revised WoT TD. The objective is to make things sensitive to privacy concerns
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and aware of situational details. In compliance with MDA principles, two meta-
models (SituationPrivacy and SituationPrivacyWoTTD) and a set of transformation
rules in ATL were developed allowing to automatically generate SituationPrivacy-
WoTTD models for things like SMDs that could be the source of violating privacy.
The implementation demonstrated the technical doability of our privacy-sensitive,
situation-aware thing description approach where different technologies and tools
were used illustrating, for instance, how a smart device’s targeted actions are dis-
abled because of specific situations and how private details are hidden because of
these situations as well. Finally, although our privacy-sensitive, situation-aware thing
description approach uses WoT TD, the approach remains generic and independent
from any specification for thing description. In term of future work, we would like
to examine the impact of enriching thing description with privacy on their discovery,
consider other things’ descriptions besides WoT TD, and apply SituationPrivacy-
WoTTD models to other case studies.

APPENDIX 1

To represent SituationPrivacyWoTTD model in JSON-LD that is WoT TD’s standard
representation format, two elements are needed: (i) a new namespace that would
refer to SituationPrivacy vocabulary and (ii) JSON representation of SituationPriva-
cyWoTTD model (e.g., SMD in Figure 5.7) that would be enhanced with this names-
pace using WoT TD @context mechanism. To obtain these two elements, we rely
on MDA principles and EMF implementation to automatically transform first, Situ-
ationPrivacy Ecore metamodel into RDF-based OWL and second, SituationPrivacy-
WoTTD Ecore instances into JSON. We used Ecore2OWL plugin14 to perform the
first transformation whose result is SituationPrivacy vocabulary.15 This vocabulary
extends WoT TD context knowledge as per Appendix 1/Listing 5.4-Line 9. Then, we
used emfjson-jackson plugin16 to automatically transform SituationPrivacyWoTTD
Ecore instance (Figure 5.7) into JSON document. This document is refined so, that, it
refers to SituationPrivacy @context and finally represented as JSON-LD document.
Finally, it is possible to make SituationPrivacy use existing vocabularies such as data
privacy vocabulary,17 context vocabulary,18 or any other vocabulary deemed appro-
priate.19

Notes
1 www.weforum.org/projects/accelerating-the-impact-of-iot-technologies.
2 tinyurl.com/2p96m4fy.
3 www.businessinsider.com/iot-security-privacy.
4 www.opengroup.org/iot/odf/index.htm.
5 Readers can consult www.w3.org/TR/wot-thing-description for an extensive description

of WoT TD.
6 www.weforum.org/agenda/2019/10/ageing-economics-population-health.
7 “Falls are the number one cause of injury in seniors. One-third of seniors fall every year

and 2.3 million of them end up in the emergency room because of a fall” [25].
8 www.eclipse.org/modeling/emf.
9 github.com/SOM-Research/wot-toolkit.

http://www.weforum.org
http://tinyurl.com
http://www.businessinsider.com
http://www.opengroup.org
http://www.w3.org
http://www.weforum.org
http://www.eclipse.org
http://github.com
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10 www.thingweb.io.
11 https://nodered.org.
12 flows.nodered.org/node/node-red-contrib-web-of-things.
13 github.com/node-red/node-red-nodegen.
14 github.com/kit-sdq/Ecore2OWL
15 abenna.github.io/SituationPrivacy
16 github.com/emfjson/emfjson-jackson.
17 w3.org/ns/dpv.
18 github.com/ocabgit/Three-LevelContextOntology.
19 schema.org.
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27. F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: A Model Transformation Tool.
Science of Computer Programming, 72(1–2), 31–39, 2008.

28. A. E. Khaled, S. Helal, W. Lindquist, and C. Lee. IoT-DDL–Device Description Language
for the “T” in IoT. IEEE Access, 6, 1, 2018.

29. K. Le, S. K. Datta, C. Bonnet, and F. Hamon. WoT-AD: A Descriptive Language for
Group of Things in Massive IoT. In Proceedings of the 2019 IEEE 5th World Forum on
Internet of Things (WF-IoT’2019), pp. 257–262, Limerick, Ireland, 2019.

https://dzone.com
https://dzone.com
https://www.aplaceformom.com
https://www.aplaceformom.com


144 Internet of Things Security and Privacy

30. T. Leppänen and J. Riekki. A Lightweight Agent-based Architecture for the Internet of
Things. In Proceedings of the IEICE Workshop on Smart Sensing, Wireless Communica-
tions, and Human Probes, Wuxi, China, March 2013.

31. Z. Maamar, M. Asim, K. Boukadi, T. Baker, S. Saeed, I. Guidara, F. Yahya, E. Ugljanin,
and D. Benslimane. Towards a Quality-of-Thing Based Approach for Assigning Things
to Federations. Cluster Computing, Springer Nature, 23(3), 1589–1602, 2020.

32. Z. Maamar, T. Baker, N. Faci, M. Al-Khafajiy, E. Ugljanin, Y. Atif, and M. Sellami.
Weaving Cognition into the Internet-of-Things: Application to Water Leaks. Cognitive
Systems Research, 56, 233–245, 2019.

33. Z. Maamar, M. Sellami, N. Faci, E. Ugljanin, and Q.Z. Sheng. Storytelling Integration of
the Internet of Things into Business Processes. In Proceedings of the Business Process
Management Forum (BPM Forum’2018) Held in Conjunction with the 16th International
Conference on Business Process Management (BPM’2018), Sydney, Australia, 2018.

34. A. Maaradji, H. Hacid, R. Skraba, A. Lateef, J. Daigremont, and N. Crespi. Social-Based
Web Services Discovery and Composition for Step-by-Step Mashup Completion. In Pro-
ceedings of the IEEE International Conference on Web Services (ICWS’2011), Washing-
ton, DC, 2011.
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6.1 INTRODUCTION
With the advent of the Internet of Things, the word “smart” has become increasingly
associated with the concept of taking a simple device that typically has basic features
and enhancing them by adding multiple functions, as well as the ability to commu-
nicate with other devices. Although communicating with other devices makes those
devices smart, they can also be more vulnerable to security and privacy issues be-
cause of their ability to communicate. An unauthorized manipulation of software or
hardware in these devices can lead to the leakage of sensitive user information, as
discussed in Kumar and Patel [22]. As Lin et al. explained in Ref. [25], smart de-
vices with internet connectivity are considerably more vulnerable to remote attacks
because attackers can download malware to them or directly access their networked
control interfaces when connected to the internet. In the last few years, smart locks
have emerged as a replacement for traditional locks that offer more features and en-
hancements. Approximately 0.42 billion U.S. dollars were spent on smart locks in
2016, according to a Statista report; however, by 2027, the market is expected to
surpass 4 billion dollars [34]. As consumers gradually replace their traditional locks
with smart locks, it is becoming increasingly important to investigate the security and
privacy issues associated with smart locks. In fact, smart locks are estimated to have
an even larger global market size if not for security and privacy concerns. According
to their paper “Smart Locks for Smart Customers?”, Hylta and Söderberg described
a study conducted in London in 2017 on customers’ adoption of smart locks. Sixty-
four percent of the 54 respondents said they would hesitate to purchase a smart lock,
with 50% citing security concerns as the reason [3].
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This chapter discusses the privacy and security issues related to smart locks, as
well as mitigation strategies and platforms from both a researcher’s and an end user’s
perspective. In the literature, there are several references analyzing commercially
available smart locks, testing them for vulnerabilities in security and privacy, and
proposing possible mitigations that we were able to explore and will be referencing
throughout this chapter. In contrast, we found few research papers that examined the
security and privacy of smart locks from the user’s perspective. As a result, we be-
lieve there is a gap in the research on smart locks since there must be a user’s input
on the privacy and security of the device’s main purpose which is to ensure the secu-
rity and privacy of the household. To overcome this issue and get an understanding
of what could be the end user’s perspective regarding the privacy and security of
smart locks, we reviewed research papers that discuss the privacy and security con-
cerns and mitigation strategies related to smart homes from the perspective of the
end user. Our rationale behind this is the fact that a smart lock is considered to be
a smart home device and shares most of its characteristics including being able to
connect to other smart home devices for automation purposes, keeping access logs,
collecting private data, granting/revoking others access to the device, etc. Because
smart locks share most of their characteristics with other smart home devices, they
also share many security and privacy concerns and possible mitigation strategies. In
this chapter, the following main objectives will be discussed:

• Identify the main smart locks security and privacy issues that were discussed
in the literature, as well as explore some of the systems and platforms that were
proposed to address them.

• Analyze the studies that examined the security and privacy issues of smart
home devices and the mitigation strategies from the perspective of end users
to identify the issues and mitigation strategies applicable to smart locks.

• Identify the research gaps in the field of smart locks privacy and security.

6.1.1 BACKGROUND

The Internet of Things has seen a tremendous amount of sophistication and diversity
over the past two decades, ranging from applications for improving and automating
services such as healthcare and smart manufacturing to smart home applications that
give users more control over their home devices in order to improve human quality
of life. A smart lock is a smart home device that was introduced as a replacement
for the traditional lock [27]. A replacement that offers far more features beyond just
locking and unlocking the door. Over the past few years, the smart lock market has
grown and become more competitive, resulting in different designs and operational
characteristics being introduced to the market [3].

6.1.2 ARCHITECTURE

Smart locks consist of three main components that are an electronically augmented
deadbolt installed on the door, a companion mobile application installed on the user’s
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smartphone, and a remote web server [36]. In order to control the smart lock, users
must have an active account on the companion mobile application. As far as archi-
tecture is concerned, smart locks can use one of two types of network designs. Those
two network designs are the Device-Gateway-Cloud (DGC) and Direct Internet
Connection [17].

6.1.2.1 Device-Gateway-Cloud (DGC)

Since most smart locks store their data in the cloud, they require internet connectiv-
ity to connect to their remote servers in order to receive updates on access control
instructions. As shown in Figure 6.1, A smart lock utilizing this architecture is not
directly connected to the Internet. It is, however, possible for such locks to retrieve
the necessary information from the cloud in two different ways. One approach in-
volves connecting the lock to the user’s smartphone via a local wireless channel,
such as Bluetooth low power (BLE) [36], and then using the smartphone’s internet
connection as a gateway for connecting to the lock’s remote servers and retrieving
the necessary information and updates. The downside of this approach is that to con-
trol and use the features of the smart lock, the user must be within Bluetooth range of
the lock. To overcome this issue, smart lock manufacturers that construct their locks
using the DGC architecture typically provide the users with the option to purchase
a Wi-Fi bridge (usually sold separately) as an alternative method of connecting the
smart lock to the server without relying on the smartphone’s internet connection. The
Wi-Fi bridge communicates with the smart lock via Bluetooth or another short-range
wireless technology, such as Z-Wave. Using this setup, smart locks can connect to
the cloud as long as the Wi-Fi bridge is working correctly, allowing users to control
their locks remotely using their smartphones without being within Bluetooth range.

6.1.2.2 Direct Internet Connection

Smart locks that use this architecture are equipped with a Wi-Fi modem embedded
in the lock which allows them to connect to the home’s Wi-Fi network [36]. The
smart lock is therefore capable of connecting directly through Wi-Fi to the remote
servers in order to retrieve the necessary information and updates, as illustrated in
Figure 6.2. Using the companion application on their smartphone, users can remotely
control the lock. However, since smart locks that use the direct internet connection

Figure 6.1 Device-gateway-cloud architecture.
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Figure 6.2 Direct internet connection architecture.

architecture can connect directly to the internet, all communication with the cloud is
done through the lock’s Wi-Fi connection only, which poses the possibility that the
user will be locked out if the user does not have access to the internet.

6.1.3 CAPABILITIES

6.1.3.1 Locking/Unlocking the Door

Locking and unlocking the door is the main capability of every smart lock. Most
smart locks require the user to lock or unlock the door by pressing a button in their
companion application, by entering a PIN, or by using biometric characteristics such
as face recognition or fingerprints. When the user’s smartphone is within Bluetooth
range of the door, some smart locks automatically unlock the door. If the door is not
manually locked by the user, the door will automatically lock after a predetermined
number of seconds unless the user manually locks it. Other smart locks, such as the
Kevo Kwikset, require the user to touch the lock in order to unlock it, which is only
possible if the smartphone is within Bluetooth range of the lock [28].

6.1.3.2 Exchanging Electronic Keys

One of the most significant distinctions between smart locks and traditional locks is
that smart locks’ owners are able to grant other users access to the lock as well as
revoke that access electronically. Those electronic keys are tokens that contain the
necessary information about the owner who is granting or revoking access, the user
who is receiving the key or whose key is being revoked, as well as environmental
information such as the duration of the access [28].
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6.1.3.3 Keeping Access Logs
Every interaction with the smart lock, such as locking/unlocking the door, sending
a digital key to someone, revoking someone’s digital key, or updating someone’s
access level, is kept in an access log (also known as activity feed). The access log
along with the timestamp of every entry can be viewed by the owner and those who
have admin capabilities [28].

6.1.3.4 Vacation Mode
Some smart locks offer a vacation mode as a way of increasing the security of the
household while the family is on vacation for a certain period of time. When enabled,
the vacation mode disables all users’ access codes so that no one can unlock the
door unless they use a physical key or use a specific code to disable the vacation
mode [30].

6.1.4 ACCESS CONTROL

Most commercial smart locks use role-based access control mechanisms that have
predefined access levels and allow the owner to set the dates and duration in which
the users can operate the lock [36]. They have four main access levels, namely, owner,
resident, recurring guest, and temporary guest [17]. A user with the owner access
level can grant access to other users through electronic keys, revoke other users’
access, read the access log, and lock/unlock the door at any time. A user with a
resident access level, however, cannot provide access to other users, revoke their
access, or view access logs, although they can operate the lock at any time. Users
with recurring guest access can, on the contrary, only operate the lock during fixed
times set by the lock owner (e.g., every Thursday from 8 am to 10 am). Lastly, a user
with a temporary guest access level may operate the lock for a period of time that is
predetermined (e.g. 24 hours).

6.1.5 AUTHENTICATION AND AUTHORIZATION

Smart lock users must create an account on the lock’s website or companion app in
order to be able to operate the lock using their smartphones. Their login credentials
will serve as an authentication mechanism to ensure that only users with the correct
credentials can operate the lock. Users can access their accounts from any device
that has the lock’s companion app installed [35]. The level of authorization depends
on the access level associated with the user’s digital key. The access list of the smart
lock is typically stored in the cloud; therefore, each time the user attempts to operate
the lock, the access list must be retrieved. Locks with a Wi-Fi modem can directly
contact the cloud to determine whether a particular user is authorized to operate the
lock at a particular time and date based on their access level. Conversely, smart locks
that follow a DGC architecture rely on the smartphone or Wi-Fi bridge as a gateway
to retrieve authorization information from the cloud to determine whether the user
should be permitted to operate the lock at a specific time and date [17].
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6.2 THE PRIVACY AND SECURITY OF SMART LOCKS
The advancement of technology and the increasing adoption of smart home devices
and smart locks have resulted in the publication of numerous research papers that
discuss the privacy and security issues associated with these technologies. They also
presented some solutions and mitigation strategies that may prove beneficial to users
of those devices in dealing with these concerns or manufacturers in improving the
privacy and security aspects of those devices in the future. In this section, we will
review research papers that focus on the security and privacy issues that are mainly
related to smart locks. Our discussion will also include other research papers that
address security and privacy issues related to smart homes, since smart locks are an
integral part of smart homes and are capable of communicating with other smart de-
vices, which allows them to inherit some of the security and privacy issues associated
with smart homes.

6.2.1 SMART LOCKS PRIVACY AND SECURITY FROM
THE PERSPECTIVE OF RESEARCHERS

In many cases, the concepts of privacy and security overlap, as a security threat can
also be considered as a privacy threat, and this overlap is even more pronounced
in the area of the Internet of Things [32]. Therefore, an attack on smart locks that
allows an adversary to gain unauthorized access to a home poses a direct threat to a
household’s privacy.

6.2.1.1 Security and Privacy Concerns
6.2.1.1.1 State Consistency Attacks
Smart locks following a Device-Gateway-Cloud architecture are susceptible to state
consistency attacks due to the lack of direct internet connection and the fact that
they rely on the internet connection of the user’s smartphone or a Wi-Fi bridge
[14,17,35,36,38]. As these smart locks keep their access control lists in the cloud
(the remote server), they use the internet connection of the smartphone or a Wi-Fi
bridge to update the companion application installed on the user’s smartphone with
the latest updated access control instructions and lock state updates. As a result, this
allows for the following two scenarios:

Revocation evasion: User X’s access to the smart lock was revoked; however,
user X has his/her smartphone disconnected from the internet and within Blue-
tooth connectivity range to the smart lock. User X can still operate the lock
because the lock companion application that is installed on the smartphone
does not have connection to the internet, which means that it does not get the
most recent update of the access control list. Additionally, no evidence of user
X operating the lock will appear on the access log on the smart lock owner’s
companion app since user X’s smartphone is not connected to the internet,
which means the lock’s state (locked or unlocked) will not be updated on the
cloud.
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Access log evasion: User X still has access legitimate to the smart lock; how-
ever, he/she turns off their smartphone’s internet connection and gets within
Bluetooth connectivity range from the smart lock in order to operate the smart
lock without allowing the owner of the smart lock and those who have admin
capabilities to know that user X has operated the smart lock. Again, since user
X’s smartphone is not connected to the internet, the smart lock’s companion
application that they have installed on their smartphone will not be able to send
state updates to the cloud so that they can be added to the access logs.

To avoid those issues, smart locks can be easily instructed to not respond to the user’s
instructions while the user’s smartphone is offline and ask the user to reconnect to
the internet in order to be able to operate the lock; however, although this guarantees
more security, it negatively affects the availability of the smart lock which might
cause user frustration about being locked out of his/her home in case of a network
outage or a lock-server connection issue [9].

6.2.1.1.2 Relay Attacks
A number of studies [17,28,29,35,36] have demonstrated that smart locks are sus-
ceptible to relay attacks, which are a form of Man-in-the-Middle (MitM) attack. As
depicted in figure 6.3, a relay attack consists of two attackers (A1 and A2), one of
whom is within proximity of the smart lock (A1), while the other is within prox-
imity of an authorized user. The attacker who is close to the smart lock (A1) uses
his Bluetooth relay device to capture the Bluetooth authentication message and re-
lays it to the other attacker who is near the smart lock’s legitimate user (A2). A2
broadcasts the signal and intercepts the response message from the user’s phone and
relays the message to A1, who in turn broadcasts the message to the smart lock to get
it unlocked. Relay attacks can only be a threat to smart locks that follow a DCG ar-
chitecture since these devices rely on Bluetooth to connect to the user’s smartphone.
Furthermore, because of how this attack works, the lock needs to also either have the
auto-unlock feature ON or have a touch-to-unlock feature for this attack to be suc-
cessful since the attackers will need to initiate the unlocking process for it to actually
unlock [21].

6.2.1.1.3 Unauthorized Unlocking
It has been shown that smart locks can be susceptible to unauthorized unlock-
ing depending on their design as well as their authentication and authorization

Figure 6.3 Relay attack.
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mechanisms [13]. For example, smart locks that allow the user to unlock the door
through a keypad are susceptible to shoulder surfing attacks. Furthermore, smart
locks that store user data, as well as the lock’s usage information, on a cloud server
can also be compromised by hackers, especially if the authentication mechanism fa-
vors the convenience of the user over the safety of the system [20]. In addition, it
is possible to gain unauthorized access to smart locks through lost or stolen smart-
phones, especially if the smartphone is not screen locked or the lock is set to auto-
matically unlock when it is within Bluetooth connectivity range [33].

6.2.1.1.4 Tenant Privacy
In most rental properties, landlords are beginning to replace traditional locks with
smart locks for a variety of reasons, including providing tenants with easier access
and avoiding the necessity of changing the locks when the tenant moves out. How-
ever, the landlords or some of the employees at the property management company
have full access to the lock and can view the tenant’s usage information, access logs,
and list of guests, friends, or family members who have access to the lock along with
when each one of them enters the home or leaves it [8]. An invasion of privacy may
result from this practice since it can result in issues such as profiling and surveillance,
which may not even be apparent to the tenant. As a matter of fact, in 2019, tenants
living in a New York City apartment complex sued their landlord because they were
forced to switch from traditional locks to smart locks. Due to the amount of informa-
tion that the landlord could obtain about them based on how they used the smart lock,
they felt that the smart lock was a threat to their privacy. The tenants were successful
in their lawsuit, and the landlord was forced to reinstall the traditional locks [10].

6.2.1.1.5 Companion Applications Vulnerabilities
As a result of a security analysis performed in Ref. [38], it has been concluded that
the August smart lock is vulnerable to handshake key leakage attacks since the com-
panion app stores the handshake key in plaintext and unencrypted on the smartphone
where the companion app is installed. The attacker is therefore able to extract that
handshake key with a rooted or jailbroken phone. By exploiting this vulnerability, an
attacker is able to operate an August smart lock simply by executing the control pro-
gram posted in the Augustctl Github repository. Knight et al. [21] discussed another
vulnerability relating to companion apps. According to the analysis of the security
of the Master Lock Bluetooth padlock, a vulnerability was found with the temporary
codes that were provided to users. The companion app’s interface advertises that the
temporary code is valid for only four hours, whereas the message generated to share
the code indicates that it will expire after eight hours.

6.2.1.2 Proposed Solutions
In Ref. [17], Ho et al. proposed an eventual consistency model as a means to mit-
igate the danger of state consistency attacks in smart locks that operate on a DGC
architecture. With an eventual consistency model, the user’s companion application
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retrieves a signed and updated access list from the server and sends it to the lock upon
each attempt to operate the lock. To avoid replay of old access lists, the list should
include a timestamp or an incrementing version number. Every time someone with
an internet connection attempts to operate the lock, the lock will receive an updated
access list. It is, therefore, possible for an attacker to perform a revocation evasion
state consistency attack only until a legitimate user operates the lock, which then
sends the lock an updated access list indicating that the attacker’s access has been
revoked. Furthermore, access log evasion state consistency attacks can be mitigated
through the use of eventual consistency since the lock will maintain a copy of the
latest log entries and will push them to the server whenever the lock is operated by
a legitimate user who has a connection to the internet, making the logs accessible to
the lock owner.

Xin et al. proposed an attribute-based access control (ABAC) framework for smart
locks utilizing the DGC architecture in Ref. [36]. The proposed system is designed
to eliminate state consistency attacks, cascading deletion of permissions, and unau-
thorized unlocking, as well as allow smart lock administrators to create and man-
age more fine-grained access control policies. While most of the smart locks sold
commercially follow a role-based access control (RBAC) model, ABAC follows an
attribute-based approach that comprises four attributes: subject (S), object (O), per-
mission (P), and environment (E) where subjects represent the lock’s users. Another
important distinction between the ABAC system and most of the commercially avail-
able smart locks is that the administrator of a smart lock that uses the ABAC system
needs to be within connection range to the lock in order to give other users access
permissions or revoke their access privileges because the policy set is kept inside the
lock as opposed to keeping it on the cloud like most commercially available smart
locks do which makes them susceptible to state consistency attacks. As much as this
feature increases the security of the ABAC systems, users might find it less conve-
nient to have to be close to the smart lock in order to manage access control policies
as opposed to being able to manage them remotely. Moreover, the proposed system
attempts to solve the cascading deletion of permissions by adding the sRole attribute
to the access control policy, which assigns the same sRole value to the person who
created the permission and the person who received it. Due to their shared sRole
value, the owner of the lock is able to revoke both privileges using the sRole.

Silva et al. present a method for protecting tenants’ privacy and security when
using online platforms for hospitality services such as Airbnb [8]. In the proposed
system, guests are able to have full control over the smart lock during their stay, so
that no one else can revoke their access or check the status of the lock during the term
of their contract. In this system, access control rules are managed by smart contracts,
which are provided by the Ethereum blockchain platform. Once the guest’s contract
expires, the system automatically revokes his access to the lock so that the host can
regain control.

The authors of Ref. [2] discuss the smart lock’s vulnerability to Man-in-the-
Middle attacks and propose a method for improving the security of smart locks
against such attacks. This proposed system utilizes both cryptography and image
steganography to conceal the data being transferred and deceive those who attempt
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to intercept the message. When the user uses the lock’s companion app to enter the
passkey, it gets encrypted using AES encryption and then the encrypted cipher text
gets encoded into an image. The image is then sent over Bluetooth to the server on
which the cipher text will be decoded from the received image. If the passkey is
valid, the door unlocks; otherwise, it remains locked.

The authors of Ref. [29] proposed SecSmartLock (Secure Smart Lock), a frame-
work that incorporates an architecture and a secure communication protocol. The
purpose of this framework is to enhance the security of smart locks and mitigate is-
sues related to revocation evasion and access log evasion that are common among
smart locks that are based on DGC architecture. There are five main components
of the proposed framework (SecSmartLock), namely, the owner, the smart lock, an
authorized user, a camera, and a server. In this framework, log evasion is prevented
because all interactions with the smart lock are immediately transmitted to the cam-
era that is connected to the lock via Bluetooth. The camera sends this information
along with a video recording to the server. This framework, however, will not be
sufficient to solve the issue of revocation evasion without an addition to the mech-
anism. The server and the smart lock will share a secret random nonce called the
central nonce. Every time the user is trying to unlock the smart lock, he has to re-
ceive the encrypted central nonce from the server and send it to the smart lock along
with the decrypted authentication nonce. CCA-secure secret key encryption is used
to encrypt the central nonce using the shared secret key. The lock then decrypts the
central nonce and compares it to the locally stored central nonce as well as compares
the decrypted authentication nonce to the one locally stored on the lock. Only if they
match can the user unlock the smart lock. Consequently, the user is always required
to have an internet connection in order to receive the encrypted central nonce from
the server, which is required at the end of the authentication process. Unless the
user’s smartphone is connected to the internet, it will not receive the encrypted cen-
tral nonce. The server will cease sending the encrypted central nonce to the user if
the owner revokes the user’s access. The design prioritizes security over availability,
which may result in legitimate users who do not have access to the internet being
locked out of the system. To overcome this, the owner of the lock is provided with a
master PIN to manually send to the users. This will enable them to unlock the lock
at any time without the need to go through the normal authentication process.

6.2.2 SMART HOMES PRIVACY AND SECURITY FROM
THE PERSPECTIVE OF THE END USER

A smart lock is considered to be an integral part of most smart homes. Additionally,
smart locks share many of the characteristics of smart home devices, including the
ability to be controlled by a companion app, the ability to be connected to other
smart home devices for automation purposes, the ability to keep access logs, the
ability to collect private data, the capability of being part of the home network, the
ability to control the device remotely, and the capability of granting remote access to
other users. As a result, smart locks share many of the same security concerns and
mitigation strategies that apply to other smart home devices. Therefore, we reviewed
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research papers that explored the security and privacy issues associated with smart
home devices and how end users choose to mitigate them. The purpose of this section
is to introduce the end users’ concerns and mitigation strategies that were discussed
in those papers and can be applied to smart locks.

6.2.2.1 Security and Privacy Concerns

6.2.2.1.1 Data at Risk in the Cloud
Regardless of which architecture a specific smart lock follows, whether it is a Device-
Gateway-Cloud architecture or a direct internet connectivity architecture, the vast
majority of these locks are designed to store usage logs, customer information, and
access control instructions in the cloud rather than on the lock itself. Although this
can be considered as a feature that allows the customer to remotely control the lock
and receive real-time notifications, several studies [5,16,31,37,40,42] show that some
users are concerned that their information may be accessed by hackers or unautho-
rized individuals. In Ref. [31], 17 of the 23 participants expressed concern about
data breaches. Furthermore, 7 of the 25 participants expressed their preference in
Ref. [37] that their smart home devices collect and process data locally rather than
sending it to the cloud. In the same study, nine participants indicated that they wish
to have explicit control over what information is collected by the cloud and also to be
able to delete it. Based on the results of Ref. [42], 39 of the 42 participants believed
that the data collected by their smart home devices were not secure, and 27 of the 42
participants were concerned that hackers could access that information. It should be
noted, however, that the data collected by smart home devices differ depending on
the type of device. There is a tendency for smart home owners to be more concerned
about the data collected by audio/video devices than other devices [41], but some
of them are also aware that other devices can also provide enough information that
might compromise their security and privacy. A person who has access to the data
collected by a smart lock is capable of operating the lock and invading the privacy of
those who use it.

6.2.2.1.2 Data Collection and Mining
Smart locks collect data such as the users’ full names, locations, when they are at
home and when they are not on a daily basis, and information regarding other smart
devices interacting with the smart lock, allowing parties with access to this data to
create profiles for those users for targeted advertising, government surveillance, etc.
The results of several studies [5,12,16,19,31,37,40–42] suggest that some users of
smart home devices are concerned that the data collected about them could be mis-
used. As a threat associated with smart home devices, 26% of the participants in
Ref. [31] mentioned “improper use and sharing of their data”. In Ref. [16], 40% of
the participants believe that the data collected by the smart home devices is being
sold to third parties, while 45% are concerned about household profiling. Differ-
ent participants in Ref. [41] had different opinions regarding the collection of data
based on who will be using it. For example, there was less concern about the man-
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ufacturer of the smart device accessing their data than they were about the internet
service providers (ISPs) having access to their data. Nevertheless, they were most
concerned about the government having access to the data. A mixed opinion was
expressed by the participants in Ref. [41] regarding advertisers. About 55% of the
participants were not concerned about advertisers accessing their data and receiv-
ing targeted advertisements, while the remaining participants were somewhat con-
cerned. It is worth noting that over 70% of the participants in Ref. [16] believe that
the manufacturers of smart home devices are partially responsible for any privacy or
security issues related to smart home devices, as manufacturers possess considerable
control over the protocols used to collect, transmit, and receive data in smart home
environments.

6.2.2.1.3 Multi-User Challenges
Typically, smart home devices are controlled or accessed by multiple users with dif-
ferent types of relationships. As an example, the owner of a smart lock may grant
access to that lock to family members living in the house or visiting the house. It is
also possible to share a smart lock with roommates who are not from the same fam-
ily. Each of these scenarios presents its own set of challenges and issues. A common
example of such issues is access imbalance, in which those with a higher level of ac-
cess are able to control how others in the household use smart devices. The purpose
of the study conducted by Zeng and Roesner [39] was to discuss issues related to the
use of smart devices within a household, as well as to determine what functionalities
and preferences an end user who lives in a multi-user environment requires to ensure
increased privacy and security. As an example, some participants required the capa-
bility of preventing guests from remotely controlling devices that they have access
to as well as limiting their ability to use a specific device while physically present in
order to feel more comfortable in a multi-user environment [39]. This could be ap-
plied to smart locks because it might not be desirable for a homeowner to allow his
guests who have access to the smart lock to be able to operate the lock remotely. The
use of smart home devices may also cause tension and direct conflict among house-
hold members over who has access to the house and who does not [11]. In Ref. [11],
Geeng and Roesner discussed situations in which tension or conflict arises between
household members due to their differing expectations regarding the use of smart
devices. Within a household, such conflicts can arise in four types of relationships:
the relationship between partners, the relationship between parents and children, the
relationship between guests and homeowners, and the relationship between room-
mates. For example, there was some tension between one of the participants in the
study and his girlfriend because they had different opinions on whether or not the
cleaning lady should have access to the house, which is a smart lock functionality. In
addition, the study showed that smart home devices can be used by parents as a tool
to manage their children as well as set limits and specific schedules. A conflict can
also arise between homeowners and their guests or non-occupants due to how some
guests interact with the smart home devices in a manner they do not appreciate. A
tension may also arise between roommates over how smart home devices should
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behave, such as who should control the thermostat [11]. Smart locks can contribute
to tensions that may occur within a multi-user environment when one of the room-
mates does not agree with the fact that another roommate has provided a digital key
or access code to another person whom the first roommate does not trust or get along
well with. It was mentioned in Ref. [7] by some participants that communicating
with other people who are also using smart home devices is an effective way of ad-
dressing their security and privacy concerns within a multi-user home environment.
This will help them understand how they feel and what can be done to protect their
personal information as well as the privacy of others.

6.2.2.1.4 Network Attacks
A major concern for owners of smart homes is the possibility of network attacks
that may allow unauthorized access to smart home devices connected to the wireless
network [16,31,37,40]. A total of 48% of the participants in Ref. [31] expressed
concerns about the possibility of their Wi-Fi being hacked and remotely controlled,
allowing adversaries to steal their personal information. If a hacker is able to gain
access to their location information and smart lock access codes, then they will also
be put in danger of their physical safety. Based on the results of Ref. [38], 3 of the 25
participants believe that an additional security feature for smart home devices should
consist of “network intrusion detection.”

6.2.2.1.5 Insecure Devices
In recent years, there has been a significant increase in the number of commercially
available smart locks, as well as smart home devices in general, from different com-
panies manufactured in different countries that are available on the market. A con-
sumer may feel overwhelmed by the various options available when they are shop-
ping for a new smart home device and may find it difficult to compare the various
security features and privacy settings of various devices. Almost 27% of the partic-
ipants in Ref. [40] are concerned that the smart home devices they purchase may
not be sufficiently secure, and 20% are concerned that their smart home devices are
malicious.

6.2.2.1.6 Physical Safety
There is a possibility that a compromised smart home device could pose a threat to
the safety of family members within the household in terms of their physical safety.
As a result, it is natural to assume that physical safety will be one of the most im-
portant concerns for users of smart homes. The significance of this is especially true
when it comes to smart locks since a compromised smart lock may allow unautho-
rized entry into the home, which may result in household members being physically
attacked by intruders if the lock is compromised. As per a study published in Ref.
[16], over 41% of the participants expressed concern about their physical safety if
their smart home devices were compromised or were able to collect sensitive infor-
mation about them that could put them at risk.
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6.2.2.2 Mitigation Strategies
Smart home devices, including smart locks, do not become obsolete simply because
they have privacy and security issues. Ultimately, these devices provide a high level
of convenience and reliability. As a result, some users choose to implement mitiga-
tion strategies rather than completely ignore smart home devices due to privacy and
security concerns. Table 6.1 provides an overview of the various mitigation strategies
employed by participants in four research papers [15,16,31,40] to address security
and privacy issues associated with their smart locks.

6.2.2.2.1 Self-censoring
Self-censoring takes many different forms, such as deciding to not provide the smart
device with additional information beyond what is necessary to complete the basic
tasks, for example, by using nicknames when giving access to family members or
guests. Thus, even if another party gained access to this information, it would not
be able to identify that individual. Self-censorship can also be achieved by choosing
to not utilize certain device functionalities, such as by turning off the “auto unlock”
feature on smart locks to avoid the smart lock constantly checking your phone’s loca-
tion information to unlock your door before you approach; 50% of the participants in
Ref. [31] and almost 20% of the participants in Ref. [16] stated that they use at least
one form of self-censoring as a mitigation strategy to deal with privacy and security
concerns related to their smart home devices.

6.2.2.2.2 Device Selection
Prior to purchasing a smart lock, conducting research to select one with a strong
privacy and security feature as well as constant updates and maintenance can also
serve as a mitigation strategy. Since different smart locks have different features and
network infrastructure, they may be more vulnerable to specific security threats than
others. For example, 17% of the respondents in Ref. [16] indicated that they take
privacy and security into account when purchasing a smart home device.

Table 6.1
Comparing the Use of Mitigation Strategies Based on Four Research Papers
[15,16,31,40]

Mitigation Strategy Mitigation Technique Number of Participants Total

Non-technical mitigation Self-censoring 25 37
Device selection 12

Technical mitigation Network configuration 26 75
Configuring device options 16
Authentication 33

Combined, the four studies have a total of 93 participants.
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6.2.2.2.3 Network Configuration
A number of studies [15,16,31,40] describe how participants configure their home
networks to mitigate privacy and security concerns relating to their smart home de-
vices. For example, using a separate network dedicated to smart home devices is one
of the most effective methods of configuring home networks to increase their level
of security and privacy. This way, smart home devices will not be affected by at-
tacks on other electronic devices, such as smartphones or personal computers, and
vice versa. However, it is important to note that only a small percentage of the par-
ticipants in each of the three studies that discussed keeping smart home devices on
a separate network had actually implemented this mitigation strategy. Additionally,
the installation of virtual private networks (VPNs) and monitoring network traffic
are two other forms of network configuration that smart home users implement to
mitigate their privacy and security concerns.

6.2.2.2.4 Configuring Device Options
Most smart home devices are configured by default for ease of use and convenience,
rather than for security, which is why some users opt to change their configurations
based on their preferences. Twenty-nine percent of the participants in Ref. [16] re-
ported configuring the settings on their smart home devices in order to increase the
security and privacy of their devices. A smart lock, for example, may be configured
so that it automatically unlocks when the user enters the neighborhood if the user
prefers a more convenient experience. This may be more convenient, but is less se-
cure since someone may be in the vicinity of the door and may gain access to the
house before the owner does. Additionally, it allows the lock to continuously request
the location of the homeowner’s smartphone. Thus, some users choose to disable this
feature in order to protect their privacy and security.

6.2.2.2.5 Authentication
As a means of increasing the security of smart home devices and preventing them
from becoming easy targets for hackers, it is very effective to use strong authenti-
cation methods such as multi-factor authentication (MFA) or a strong password to
protect user accounts associated with those devices [15,16,31]. As a matter of fact,
39% of the participants in Ref. [31] used it as a mitigation strategy to address their
privacy and security concerns with respect to smart home devices. As mentioned
above, not all smart home devices, including smart locks, support MFA, which high-
lights the importance of selecting the smart home device that offers the most security
options.

6.3 RESEARCH GAPS
While many studies have examined the security and privacy issues associated with
smart locks as well as proposed novel and viable mitigation strategies for resolving
these challenges, we observed that the literature still lacks studies that examine the
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privacy and security issues associated with smart locks from the end users’ perspec-
tive. It is rare in the literature to find work that discusses these issues from the per-
spective of the end users of smart locks. As a result, we believe that future research
papers should address the following topics, such as exploring the privacy and security
concerns associated with smart locks from the perspective of end users, examining
and evaluating the mitigation strategies used by the end user to address these con-
cerns, and assessing the level of familiarity of the end user with security and privacy
issues associated with smart locks.

Other research papers have explored privacy and security issues related to smart
home devices from the perspective of end users, as discussed in Section 9.2.2 of this
chapter; however, it’s also important to conduct similar studies that focus primarily
on smart locks as the purpose of using smart locks and the types of data that smart
locks collect may be different compared to other smart home devices which may
result in different security and privacy concerns unique to smart locks. This is also
true for mitigation strategies that can be used to deal with those unique privacy and
security concerns related to smart locks. As an example, installing a video doorbell
can serve as a mitigation strategy to address privacy and security concerns regarding
smart locks, but this is not applicable to most other smart home devices. Therefore,
and due to the fact that different smart home devices can have different end users’ pri-
vacy and security concerns and mitigation strategies, many other studies were pub-
lished that focus on specific smart home devices such as Refs. [1,4,6,18,23,24,26]
that focus specifically on the privacy and security concerns related to smart speak-
ers and virtual assistants from the perspective of their end users. Furthermore, the
importance of discussing such topics from the viewpoint of the smart lock users can
be explained by the fact that the privacy and security concerns of end users must be
taken into account so that meaningful changes can be made in the future to the smart
lock system and design to ensure that those improvements cater to the user’s needs.
Additionally, it is necessary to examine the mitigation strategies that smart lock users
use to address their privacy and security concerns in order to systematically evaluate
their effectiveness and weaknesses. Lastly, evaluating the end user’s familiarity with
security and privacy issues associated with smart locks is imperative, as smart locks
are primarily responsible for the security and privacy of an entire house, as well as
the security and privacy of its inhabitants and their belongings. In light of this, it is
imperative that users of smart locks have a high level of awareness of the security
and privacy challenges associated with smart locks so that they can plan to mitigate
those challenges while also enjoying the convenience and ease of use associated with
smart locks.

6.4 CONCLUSION
Increasing the security and privacy of smart locks has a direct impact on improving
the security and privacy of the home and its inhabitants. In order to improve the se-
curity and privacy of smart locks, it is necessary to investigate privacy and security
issues related to commercially available smart locks, as well as the mitigations
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proposed to mitigate these issues. In this chapter, we examined those issues and
mitigation strategies from the perspective of both researchers and end users of smart
home devices. Moreover, we identified the research gaps when it comes to studies on
the privacy and security of smart locks. Future research should focus on exploring
the security and privacy issues associated with smart locks from the viewpoint of end
users, as well as evaluating the mitigation strategies end users employ to address and
cope with their concerns.
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7.1 INTRODUCTION
The Internet of Things (IoT) is defined as the network of physical devices or
“things” that are embedded with electronics, software, different kinds of sensors and
actuators and are connected to the internet via heterogeneous access networks to
enable “things” to exchange data with the manufacturer, operator, and/or other con-
nected devices [24,31]. Industrial IoT (IIoT) is a specialized IoT device that is de-
signed as part of industrial processes or products. Considering communication re-
quirements, IIoT can be classified into three categories: sensors that mainly transmit
measurements, actuators that mainly receive control commands, and sensors/actua-
tors that combine the capabilities to transmit and receive. IIoT industrial use cases
are vast, where they can perform sensing and actuation tasks with minimal human
intervention [17,24].

Enabled by innovative technologies such as 5G/6G wireless connectivity, artificial
intelligence, and machine learning, IoT will continue to find enormous opportunities
in applications across a wide range of industry verticals. IoT is being widely de-
ployed in industries such as healthcare, energy, transportation, and manufacturing, to
name a few [16,25,26,33]. IoT use-cases are motivating a massive IoT adoption trend
that predicts the connectivity of 75.44 billion devices by 2025 [33]. The increased
utilization of IoT in critical and sensitive processes underscores the need to establish
strong controls to ensure trusted and reliable operation. From a communication per-
spective, large-scale deployments of IoT can be supported by massive machine type
communication (MTC) and machine-to-machine links; however, security might not
be trivial at such scales.
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When discussing IoT ecosystems, it is informative to mention the role of wireless
sensor networks (WSN). WSN describe collections of networked wireless sensors
that measure physical conditions and transmit readings to a central location. WSN
be considered as a subset of IoT networks that enable improved industrial automa-
tion applications by providing means to monitor industrial environment conditions
utilizing wireless IoT sensors (e.g., pressure and temperature sensors). WSN transfer
collected data to a data hub for processing, observation, analysis, decision-making,
and real-time close-loop control. Industrial WSN provide industrial plant operators
with many benefits including quality and timely information required for decision-
making, advanced distributed control, improved productivity, and better asset and
process visibility [16,25].

In IoT networks, it is critical to consider the security objectives of confidentiality,
integrity, and availability in the design and operation of such systems. Recalling that
security objective of data availability ensures that authorized users can access in-
formation whenever required. In IoT networks, the reliability of the communication
system directly affects data availability. Factors such as hardware failures, software
downtime, human error, cyberattacks, and channel access opportunities can nega-
tively impact data availability. To mitigate information availability concerns, system
operators implement information security policies and security controls, including
redundancies and backups, to ensure uninterrupted system operation and information
availability. However, such approaches may not mitigate threats such as jamming and
intentional electromagnetic interference attacks.

In this chapter, we consider the channel access problem for IoT devices in an
industrial WSN [1,18,20,27,28] as we take another approach to address information
availability in IoT networks. We utilize a cognitive communication system setup in
which IoT devices are treated as the secondary users sharing the channel with the
primary user. We focus our treatment on the case of IoT devices wanting to transmit
sensor measurements to a common receiver unit without violating the primary user’s
outage probability requirements. A base station in an industrial plant can be modeled
using the aforementioned common receiver unit. In contrast to recent work [26],
we focus on uncoordinated channel access for IoT devices with the goal to satisfy
information availability requirements.

Our model allows IoT devices (treated here as secondary users in a cognitive
communication system) to transmit over a shared channel without coordinating their
activity with other devices in the system [16,25]. The proposed model focuses on the
transmission strategy of one secondary user regardless of the channel-access activ-
ity of other competing secondary users. This model is motivated by relevant indus-
trial WSN settings where several different IoT devices require channel transmission.
In such environments, the proposed approach would help alleviate the overhead of
coordinating channel access between the users of the channel while not negatively
impacting the performance of primary user.
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7.2 RELATED WORK
Cybersecurity of IoT systems has been an active field of research and development
for years. Recent works include [3–5,21,22,30,32]. Intrusion and anomaly detection
schemes for IoT systems are proposed in Refs. [3,30], respectively. Vulnerability as-
sessment for IoT-based smart homes is discussed in Ref. [4], and a framework for
vetting IoT is described in Ref. [22]. A review of authentication and identity man-
agement practices for internet of healthcare things is provided in Ref. [21], and intel-
ligent authentication of 5G healthcare devices is surveyed in Ref. [32]. Architectures
and techniques for security and privacy of IoT systems are discussed in Ref. [5].

Spectrum-sharing cognitive communications is a promising technology to sup-
port mMTC as it improves spectrum utilization efficiency [23]. In a spectrum-sharing
communication environment, unlicensed (also known as secondary) users adapt their
communication parameters to be able to transmit over a wireless channel without vi-
olating a performance metric of the licensed (also known as primary) user of that
channel. As such, cognitive communication systems can provide attractive solu-
tions for IoT connectivity and mMTC while accommodating resource allocations
[6,14,26,34]. Cognitive communication schemes can be extended to support the anal-
ysis of IoT transmissions in various communication environment including industrial
plants.

A game-theoretic model is developed in this chapter to capture the secondary
users’ uncoordinated transmissions and investigate the impact of their transmission
strategies on selected performance metrics. Specifically, the dynamical interactions
between the secondary users in the industrial WSN are modeled using a 2×2 iterated
game. Further, in a specific transmission interval, an IoT device of interest, denoted
as the controller user, reacts to the transmission activity of opponent IoT devices from
the previous transmission round. The select IoT device (i.e., controller user) adopts
the game-theoretic strategy to transmit over the shared channel without coordinating
its activity with other IoT devices in the system while complying with the quality of
service (QoS) requirement, chosen here to be the primary outage probability.

The adopted iterated game models lend themselves to Markovian strategies, of-
ten called zero-determinant strategies [2,29]. Here, players with longer memory of
the game history do not have a long-term performance advantage over other game
players with shorter memories. With zero-determinant strategies, a game player can
control its long-term payoff through exploiting the structure of the payoff matrix of
the game. Thus, the proposed zero-determinant transmission strategy enables decen-
tralized and uncoordinated channel access for IoT devices, which leads to a simpli-
fied scheduling algorithm with guarantees of meeting QoS requirements. Simplified
scheduling algorithms, such as the one proposed in this chapter, better fit limited-
resources IoT devices and would help extend battery life in battery-operated IoT.

The works in Refs. [8,9] demonstrate the feasibility of using physical-layer se-
curity practices in achieving security measures for IoT undergoing interference and
eavesdropping attacks. Building on the promise of these recent approaches to se-
curity, this book chapter applies a physical-layer security approach to information
availability through the use of uncoordinated IoT channel access.
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To the best of the authors’ knowledge, uncoordinated channel access for IoT de-
vice in a spectrum-sharing setting using zero-determinant-based transmission strate-
gies has not been addressed before.

7.3 SYSTEM MODEL
WSN provide communication infrastructure to observe environment parameters and
enable monitoring, analysis, and control. Recall that a sensing IoT device is typi-
cally resource constrained in communication, storage, processing power, and/or en-
ergy capabilities. Industrial networks could potentially include hundreds of sensing
IoT devices; thus, given the resource-constrained nature of such devices, scheduling
efficient channel access for IoT information availability is a problem of interest.

7.3.1 SPECTRUM-SHARING COGNITIVE SYSTEMS

In spectrum-sharing systems, a secondary user can simultaneously transmit over the
channel along with the primary user under the constraint that secondary transmis-
sion activity does not deteriorate a QoS measure. QoS requirements often include
having limits on the average or maximum secondary interference, limiting the out-
age probability of the primary user to some threshold, or having minimum signal-
to-interference plus noise ratio (SINR) for the primary user’s signal. The primary
user’s outage probability is chosen as the QoS constraint for spectrum-sharing sys-
tems in Refs. [7,10–13].

For multi-user spectrum-sharing systems, multiple secondary users want to trans-
mit over the same channel in order to achieve data availability requirements. In this
case, some scheduling authority could decide which user is scheduled to transmit
over the shared channel; furthermore, the scheduling criterion might take metrics like
fairness between users or channel conditions into considerations. For example, the
secondary user with the weakest channel is assigned the channel in a multi-user en-
vironment in Ref. [19]; different scheduling schemes are investigated for spectrum-
sharing systems Refs. [7,12].

In this chapter, we utilize a game-theoretic formulation to devise an uncoordinated
strategy for IoT channel transmission for information availability while meeting the
outage probability constraints of the primary user of the system.

7.3.2 PROBLEM STATEMENT

Consider a generic industrial WSN as illustrated in Figure 7.1. Here, the consid-
ered communication system includes a primary user (denoted as PU) that utilizes the
channel to communicate data to a common receiver unit (denoted as RU). In this set-
ting, PU could be the licensed user for the channel or a critical industrial device with
stringiest QoS constraints. Also, consider multiple secondary users, collectively de-
noted as SUs, that want to communicate their own data to RU. SUs represent in this
setup the multiple resource-constrained IoT sensors in the industrial network. Both
PU and SU can transmit concurrently over the shared channel; however, concurrent
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Figure 7.1 Problem setup for a generic industrial wireless sensor network showing IoT
devices collaborating to access the shared channel.

secondary transmissions, when they happen, cause interference on PU’s signal. The
interference could be sensed at RU which affects the QoS of PU’s transmission.
Hence, a spectrum-sharing wireless communication setup is considered here, where
SU can transmit over the shared wireless channel if it complies with the QoS require-
ments of PU.

SUs are split into two groups: SU1 is the IoT device of interest, and SU2 repre-
sents the remaining IoT devices in the system. SU1 and SU2 denote the controller
user and the opponent user, respectively. The main objective is to develop a trans-
mission strategy for SU1 that enables this device to communicate over the channel
and also meet the QoS constraints of PU regardless of the transmission activities of
SU2. The transmission strategy of SU1 should also allow the remaining SU2 nodes
in the industrial WSN to communicate their measurements using spectrum-sharing
cognitive communication without coordination while meeting the QoS requirement
of PU.

To facilitate a technical discussion, consider a setting where there are two or more
SUs in the communication system that want to concurrently share the channel with
PU and transmit data to RU. This concurrent secondary transmission leads to inter-
ference on the primary signal received at RU. Figure 7.2 shows the communication
system setting for the primary user and two secondary users.

First, let Pp and Rp denote PU’s transmission power and data rate over the chan-
nel, respectively, and let Ps denote SU’s transmission power. Then, Ps1 means the
transmission power of SU1, and Ps2 is the transmission power of SU2. The received
signals at RU are corrupted with an additive white Gaussian noise with a mean of
zero and a variance of σ2. Next, assume the wireless channels between PU, SU1,
and SU2 with RU experience independent and identically distributed (i.i.d.) block
fading with a Rayleigh distribution for the channel gains. Thus, the channel power
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Figure 7.2 Model of the considered system showing the channels between the IoT devices
and the receiver unit.

gains between PU, SU1, and SU2 with RU are denoted as Gp, Gs1 , and Gs2 , each
having an exponential distribution.

Now, let the QoS constraint that SUs have to adhere to be the outage probability
of the received PU’s signal at RU. Thus, to transmit over the shared wireless chan-
nel, both SU1 and SU2 must not increase the primary outage probability beyond a
QoS limit named ζ . Let the SINR of the received PU’s signal at RU be denoted
as γp, and let P{.} be the probability operator. Consequently, the QoS constraint
on the primary outage probability at RU using the IoT transmission is defined as
P{log2 (1+ γp)≤ Rp} ≤ ζ [15].

7.3.3 PRIMARY OUTAGE PROBABILITY

Now, we investigate the impact of the concurrent secondary transmissions on the
primary outage probability. When there is no secondary transmission, the signal-
to-noise ratio (SNR) of the received PU’s signal at RU is expressed as γp =

PpGp
σ2 .

Then, the primary outage probability, denoted for this case as ζ0, is calculated from
ζ0 = P{log2 (1+ γp)≤ Rp}, or ζ0 = P{γp ≤ 2Rp −1}. Consequently:

ζ0 = 1− exp(
1−2Rp

PP/σ2 ). (7.1)

Next, the outage probability under spectrum-sharing secondary communications is
considered. When the shared channel is being accessed by SU along with PU, the
SINR of PU’s signal becomes γp =

PpGp
PsGs+σ2 for a secondary transmission power of

Ps with channel power gain of Gs. Let fγp be the probability density function (PDF)
of γp; then:

fγp(z) =
∞∫

σ2

1
Pp

1
Ps

yexp(− yz
Pp

)exp(
σ2 − y

Ps
)dy. (7.2)
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This leads to:

fγp(z) =
Pp

Ps
exp(−σ2

Pp
z)

1

(z+ Pp
Ps
)2

(
σ2

Pp
(z+

Pp

Ps
)+1

)
. (7.3)

The outage probability of PU is then derived from ζs = P{γp ≤ 2Rp −1}, leading to:

ζs = 1+
ζ0 −1

1+ Ps
Pp
(2Rp −1)

. (7.4)

Comparing Eqs. (7.1) and (7.4), it is observed that PU experiences higher outage
probability compared to the case when there is no secondary transmission because
ζ0 < ζs for Ps > 0. Thus, when SUs concurrently transmit their data over the shared
channel along with PU, they need to comply with ζs ≤ ζ . As PU allows uncoordi-
nated secondary transmissions, it is understood here that ζ0 < ζs ≤ ζ , where ζ was
defined before as the primary QoS threshold.

7.4 ZERO-DETERMINANT STRATEGIES
In this section, we describe a game-theoretic strategy for iterated games, termed zero-
determinant, in order to devise an uncoordinated channel access for the controller
user (i.e., SU1) to meet the outage probability constraints of PU regardless of the
transmission activity of other opponent users (i.e., SU2). The zero-determinant game
approach fits the nature of repeated uncoordinated transmissions of IoT devices in
an industrial WSN.

A generic payoff matrix of a 2× 2 iterated game is depicted in Figure 7.3. Two
players are in the game: User 1 (also called the controller user) is the row player in
the payoff matrix, and User 2 (also called the adversary user) is the column player
in the matrix. A player in this iterated game chooses one from two actions {1,2}
at each round of the game. The game actions of User 1 and User 2 are denoted as
n1 and n2, respectively. Let n1 = 1 indicate an active User 1 in a given round of the
game; also, let n1 = 2 mean an idle User 1 in a game round. Similar notation applies
to the User 2: n2 = 1 and n2 = 2 mean an active adversary and an idle adversary,
respectively. Further, for j,k ∈ {1,2}, the value X j,k in Figure 7.3 represents the
payoff of a game round when User 1 chooses action n1 = j and User 2 chooses
action n2 = k.

Figure 7.3 Generic payoff matrix of a 2×2 iterated zero-determinant game.
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In addition, when the same payoff matrices and the same users’ actions are re-
peated in the iterated game, any history of user actions outside what is shared be-
tween the game players can be ignored as shown in Ref. [29]. Then, if this is
the case, a Markov chain approach can be utilized to model this iterated game.
Thus, let n(t) = (n1,n2) represent the state of the iterated game at round t, and let
S = {(1,1),(1,2),(2,1),(2,2)} denote the state space of the game at round t. In ad-
dition, let k = (k1,k2), where k1,k2 ∈ {1,2}, be the probability that User 1 takes
action 1 in round t +1 given that User 1 took action k1 and User 2 took action k2 in
round t is then expressed as

pk
1 = P(n1(t +1) = 1 | n(t) = k), ∀k ∈ S . (7.5)

For User 2, the probability that n2 = 1 in round t + 1 if User 1 took action k1 and
User 2 took action k2 in round t is calculated as:

pk
2 = P(n2(t +1) = 1 | n(t) = k), ∀k ∈ S . (7.6)

Let the stationary probability distribution of User 1 taking action j and User 2 taking
action k be termed π j,k, ∀ j,k ∈ {1,2}. Then, the Markov chain that can be employed
to model this iterated game has π = [π1,1,π1,2,π2,1,π2,2]

T as a stationary distribution.
Let X̂ = [X1,1,X1,2,X2,1,X2,2]

T ; then, the long-term average payoff of the iterated
game, denoted as uX , can be found from Ref. [2]

uX = π
T X̂ . (7.7)

Let a and b be two arbitrary non-zero real numbers, and let the action probabilities
be expressed as:

aX̂+b =
[
−1+ p1,1

1 ,−1+ p1,2
1 , p2,1

1 , p2,2
1

]T
. (7.8)

It is shown in Ref. [29] that if pk
1’s are chosen following Eq. (7.8), then User 1 can

fix uX of the iterated game regardless of the game actions of User 2 if and only if the
minimum value of one row in the payoff matrix of Figure 7.3 exceeds the maximum
value of the other row of the matrix. Furthermore, User 1 can fix uX to any value in
the range between those minimum and the maximum values [2].

Let p1,1
1 , p1,2

1 , p2,1
1 , and p2,2

1 denote the probability that User 1 is active in the
current play round given that n1 = 1 & n2 = 1, n1 = 1 & n2 = 2, n1 = 2 & n2 = 1,
and n1 = 2 & n2 = 2 in the previous interval, respectively. To achieve a specific value
of uX , User 1 takes an Active action in any game round with probabilities of Ref. [2]:

p1,1
1 = 1+

(
1− X1,1

uX

)
b

p1,2
1 = 1+

(
1− X1,2

uX

)
b

p2,1
1 =

(
1− X2,1

uX

)
b

p2,2
1 =

(
1− X2,2

uX

)
b .

(7.9)
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Further, b in Eq. (7.8) needs to have a valid value in the range of Ref. [2]:

0 < b ≤ min

 −1

1− X1,max
uX

,
1

1− X2,min
uX

. (7.10)

7.5 GAME-THEORETIC STRATEGY FOR IoT TRANSMISSION
We apply the game-theoretic approach to address the IoT channel access problem in
this section. We employ the zero-determinant strategy of repeated games to formu-
late an uncoordinated channel access strategy for industrial IoT devices (SUs) while
meeting the QoS requirement.

7.5.1 UNCOORDINATED TRANSMISSION STRATEGY

Recall that the IoT device of interest wants to transmit the data over the shared
channel without coordinating its transmission activities with other IoT devices while
meeting the primary outage constraint. Consequently, we utilize the value of the out-
age probability ζs to represent the payoff of the game at the end of each interval ∆T .
Thus, representing the role of SU1, User 1 wants to communicate over the wireless
channel; also, User 1 wants to satisfy the QoS requirements of PU regardless of the
channel access activity of the other SUs in the communication environment. As a
starting point, the collective action of the rest of SUs in the system is modeled as
SU2 (i.e., the opponent user). In the following discussion, we focus on the actions of
SU1 as the controller user.

Let X =
[
X j,k

]
denote the payoff matrix of PU during interval ∆T . As previously

described in Section 7.3, the values in X represent the primary outage probabilities
as shown in Figure 7.4. In this notation, SU is Active means that SU transmits over
the channel during interval ∆T ; similarly, an Idle SU indicates there is no secondary
transmission during the interval. Furthermore, let X j,max and X j,min stand for the max-
imum and minimum values of row j in X, respectively. From Figure 7.4, these values
are found as:

Figure 7.4 Payoff matrix of the primary user of the system showing the outage probabilities.
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X1,max = X1,1 = 1+ (ζ0−1)Pp

Pp+(Ps1+Ps2 )(2
Rp−1)

X1,min = X1,2 = 1+ (ζ0−1)Pp

Pp+Ps1 (2
Rp−1)

X2,max = X2,1 = 1+ (ζ0−1)Pp

Pp+Ps2 (2
Rp−1)

X2,min = X2,2 = ζ0 .

(7.11)

Consider the case of an empowered User 1 that has higher transmission power than
the opponent IoT device (i.e., Ps1 > Ps2 ); then, it is observed that X2,min < X2,max <
X1,min < X1,max. Thus, X2,max < X1,min is satisfied. Consequently, the long-term av-
erage payoff (uX ) that can be achieved using the zero-determinant strategies by SU1
can be in the range [X2,1 , X1,2], or

uX ∈ 1+
[

(ζ0 −1)Pp

Pp +Ps2(2
Rp −1)

,
(ζ0 −1)Pp

Pp +Ps1(2
Rp −1)

]
. (7.12)

Consider the case when uX has to be a specific value in the valid range, and let
0 ≤ α ≤ 1 be termed the persistence factor. Then, uX can be parameterized using:

uX = X2,1 +α(X1,2 −X2,1)

= 1+ (ζ0−1)αPp

Pp+Ps1 (2
Rp−1)

+
(ζ0−1)(1−α)Pp

Pp+Ps2 (2
Rp−1)

.
(7.13)

In this notation, a higher value of α shifts uX closer to its upper limit (X1,2), implying
that SU1 is more aggressive in transmitting over the wireless channel while satisfying
the QoS constraint.

Further, following the findings of Ref. [2], b has a range of values from Eq. (7.8)
as:

0 < b ≤ min
(

−uX

uX −X1,max
,

uX

uX −X2,min

)
. (7.14)

Define:

bmax =


uX

X1,max−uX
uX ≤ X1,max+X2,min

2
uX

uX−X2,min
uX >

X1,max+X2,min
2

. (7.15)

Let 0 < β ≤ 1 be denoted as the steering factor; then, the value of b that SU1 will be
using in the transmission strategy can then be expressed as:

b = βbmax . (7.16)

Similarly, higher values of β indicate that SU1 is more probable to be Active in the
current transmission interval (i.e., SU1 transmits data to RU) if it was idle in the
previous one, and SU1 is less probable to transmit over the channel in the current
transmission ∆T if the IoT device was active in the previous ∆T .

For j,k ∈ {1,2}, let the transmission status of SU1 and SU2 in the previous ∆T be
j and k, respectively. Also, assume j and k are known to SU1. Thus, p j,k

1 means the
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probability that SU1 is active on the channel in the current ∆T given that it knows
that n1 = j and n2 = k in the previous ∆T . Then, from Eqs. (7.9) and (7.13), the
probabilities of SU1 transmitting over the channel in a ∆T are expressed as:

p1,1
1 = 1+ X2,1+α(X1,2−X2,1)−X1,1

X2,1+α(X1,2−X2,1)
b

p1,2
1 = 1+ X2,1−X1,2

X2,1+α(X1,2−X2,1)
(1−α)b

p2,1
1 =

X1,2−X2,1
X2,1+α(X1,2−X2,1)

αb

p2,2
1 =

X2,1+α(X1,2−X2,1)−X2,2
X2,1+α(X1,2−X2,1)

b.

(7.17)

Given this development, the controller user (SU1) can adopt a transmission strategy
that takes into consideration the most-recent transmission actions of the opponent
and controller users and still satisfies the QoS constraint of PU. Algorithm 3 depicts
the zero-determinant transmission strategy that SU1 employs to transmit over the
wireless channel while maintaining uX as a long-term average payoff and meeting
the QoS requirement ζ of PU.

Algorithm 3 IoT Transmission Strategy

Collect values of ζ , Rp, Pp, σ2, and Ps2 .
Determine value of transmission power Ps1 .
Calculate payoff matrix X .
Determine values of parameters α and β .
Calculate long-term average payoff uX that satisfies outage probability require-
ment ζ .
Calculate p1 for channel access probabilities.
Set j = 2 as a starting Idle status in the previous ∆T .
while TRUE do

Find transmission status of SU2 in the previous interval ∆T .
Determine value of k ∈ {1,2}.
Calculate value of p j,k

1 .
Generate a random number 0 ≤ r ≤ 1.
if p j,k

1 ≥ r then
Channel access: SU1 transmits data over the channel with transmission power
Ps1 .
Assign j = 1.

else
Channel idle: SU1 does not transmit over the channel.
Assign j = 2.

end if
if SU1 has no more data to transmit, then

Exit IoT Transmission Strategy.
end if

end while
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7.5.2 SPECIAL CASES

We now focus on the study of few special cases of Eq. (7.17) to gain more insights on
the proposed IoT device’s transmission strategy. The cases highlight the difference
in transmission strategy when the controller user adopts competitive versus noncom-
petitive strategies; in addition, the we consider the practical case when the system
users utilize the same transmission power.

7.5.2.1 Case of Competitive Strategy
Consider the case when SU1 adopts a more aggressive transmission strategy by
choosing uX >

X1,max+X2,min
2 . In this case, bmax =

uX
uX−X2,min

in Eq. (7.15); as a result,
the transmission probabilities become:

p1,1
1 = 1+β

(1−α)X2,1+αX1,2−X1,1
(1−α)X2,1+αX1,2−X2,2

p1,2
1 = 1−β (1−α)

X2,1−X1,2
(1−α)X2,1+αX1,2−X2,2

p2,1
1 = βα

X1,2−X2,1
(1−α)X2,1+αX1,2−X2,2

p2,2
1 = β .

(7.18)

Further, uX = X2,1 when α = 1. Consequently, the transmission probabilities of SU1
when α = 1 become:

p1,1
1 = 1−β

Ps2
Ps1

Pp

Pp+(Ps1+Ps2 )(2
Rp−1)

p1,2
1 = 1

p2,1
1 = β

Ps1−Ps2
Ps1

Pp

Pp+Ps2 (2
Rp−1)

p2,2
1 = β .

(7.19)

The above result signifies that SU1’s competitive strategy leads to certain probability
of transmission if the opponent user was idle during the previous interval. Further-
more, when both users were idle in the previous interval, the controller user will
transmit over the channel during the current interval with a probability of β ; as was
described earlier, a higher value of β leads to SU1 being more probable to be active
in the current transmission interval if it was idle in the previous interval.

7.5.2.2 Case of Noncompetitive Strategy

When SU1 adopts a less competitive strategy by choosing uX ≤ X1,max+X2,min
2 ,

Eq. (7.15) simplifies to bmax =
uX

X1,max−uX
. The transmission probabilities become:

p1,1
1 = 1−β

p1,2
1 = 1−β

uX−X1,2
uX−X1,1

p2,1
1 =−β

uX−X2,1
uX−X1,1

p2,2
1 =−β

uX−X2,2
uX−X1,1

.

(7.20)
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Similarly, when α = 0, SU1 settles for the lower bound of the payoff range leading
to uX = X2,1. This results in the following transmission probabilities:

p1,1
1 = 1−β

p1,2
1 = 1−β

X2,1−X1,2
X2,1−X1,1

p2,1
1 = 0

p2,2
1 =−β

X2,1−X2,2
X2,1−X1,1

.

(7.21)

The noncompetitive strategy of SU1 leads to the case where the controller user does
not utilize the channel if during the previous interval it was idle and the opponent
user was active; this strategy achieves the lowest payoff possible.

7.5.2.3 Case of Equal Transmission Power
Consider the case when SUs have equal transmission powers leading to Ps1 = Ps2 =
Ps. For this case, the long-term average payoff becomes:

uX = X1,2 = X2,1 = 1+ (ζ0−1)Pp

Pp+Ps(2Rp−1)

X1,1 = 1+ (ζ0−1)Pp

Pp+2Ps(2Rp−1)
.

(7.22)

As such, SU1 can access the wireless channel with transmission probabilities of:

p1,1
1 =

{
1−β

Pp

Pp+2Ps(2Rp−1)
bmax =

uX
uX−X2,min

1−β bmax =
uX

X1,max−uX

p1,2
1 = 1

p2,1
1 = 0

p2,2
1 =

{
β bmax =

uX
uX−X2,min

β
Pp

Pp+2Ps(2Rp−1)
bmax =

uX
X1,max−uX

.

(7.23)

This situation resembles the practical case of IoT devices with similar transmission
settings. The results above indicates that the controller user will be certainly active
in the channel if during the previous interval it was active while the opponent user
was idle. On the other hand, SU1 will not be transmitting over the channel if during
the past interval it was idle and SU2 was active.

7.5.3 PERFORMANCE ANALYSIS

The probability that SU1 takes an active action (i.e., p1) is defined in Eq. (7.5); also,
p2, the probability that opponent user takes an active action, is defined in Eq. (7.6).
Let the state transition matrix of the Markov chain be denoted M and is defined as:
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M =


p1,1

1 p1,1
2 p1,1

1 (1− p1,1
2 ) (1− p1,1

1 )p1,1
2 (1− p1,1

1 )(1− p1,1
2 )

p1,2
1 p2,1

2 p1,2
1 (1− p2,1

2 ) (1− p1,2
1 )p2,1

2 (1− p1,2
1 )(1− p2,1

2 )

p2,1
1 p1,2

2 p2,1
1 (1− p1,2

2 ) (1− p2,1
1 )p1,2

2 (1− p2,1
1 )(1− p1,2

2 )

p2,2
1 p2,2

2 p2,2
1 (1− p2,2

2 ) (1− p2,2
1 )p2,2

2 (1− p2,2
1 )(1− p2,2

2 )

 . (7.24)

Let π be the stationary distribution calculated using [2,29]:

π
T = [π1,1,π1,2,π2,1,π2,2] = π

T M . (7.25)

As previously described, π j,k, ∀ j,k ∈ {1,2}, denotes the stationary probability distri-
bution of SU1 taking action j while the opponent user taking action k. Since ∑π = 1,
the stationary distribution π can be calculated from the normalized left eigenvector
of the transition matrix M that has a corresponding eigenvalue of 1. Consequently,
SU1’s transmission probability is π1,1 +π1,2.

Define the primary channel’s capacity vector as:

Cp = log2

1+PPGp/


Ps1Gs1 +Ps2Gs2 +σ2

Ps1Gs1 +σ2

Ps2Gs2 +σ2

σ2


 . (7.26)

Then, the mean capacity of PU’s channel is found as Cp = πT ·Cp. Similarly, let the
channel’s capacity vector of the controller user be defined as:

Cs = log2

(
1+Ps1 Gs1/

[
PPGp +Ps2Gs2 +σ2

PPGp +σ2

])
. (7.27)

The mean channel capacity of the controller user is then calculated using Cs =
1

π1,1+π1,2
[π1,1,π1,2]Cs.

Given the developed zero-determinant transmission strategy depicted in Algo-
rithm 3, the controller user can choose to be an active user of the wireless channel
or idle to conserve resources. Moreover, the controller user in the game does not
have to know the entire history of the opponent user’s transmission activity in or-
der to utilize the IoT transmission strategy. User 1 can take a transmission action in
the current interval based only on the transmission state of the opponent user in the
previous interval.

Recall that the long-term average payoff achieved using the proposed zero-
determinant strategy lies in [X1,1 , X1,2]. Further, if SU1 chooses to transmit over the
shared wireless channel in all intervals (i.e., not following Algorithm 3), the long-
term average payoff will be in the range of [X2,1 , X1,2], which is higher than that
achieved by utilizing the proposed transmission strategy. Nevertheless, the proposed
transmission strategy gives the secondary users a guarantee of meeting the QoS re-
quirement of PU while satisfying any constraints on channel-access costs or data
availability.
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7.6 EXTENSION TO MULTIPLE USERS
The analysis presented for two players is next extended as a repeated game with
multiple players. This is necessary to examine the scalability and generality of the
presented model. Let N ≥ 2 be the number of game players with {1, . . . ,N} being the
index of the players. Let n(t) = [n1(t), . . . ,nN(t)] represent the state of the repeated
game at round t, where ni(t) ∈ {1,2} describes the Active or Idle binary actions
∀t, i ∈ {1, . . . ,N}. A multi-dimensional Markov chain can be used to describe the
process {n(t) : t = 0,1, . . .}, and the state transition matrix, M, can be presented
using a 2N ×2N matrix.

Similar to the two-player game, a player i, ∀i = {1, . . . ,N}, in an N-player game
takes a specific action in a given round with a probability that depends on the Active
or Idle actions of the players in the previous round of the game. Further, let Xk

i refer
to the payoff value of player i in the current round if the state of the game is k at
the previous round, and let pk

i be the probability that player i takes action 1 in a
given game round if the game is in state k in the previous one. Also, define Xk

i,min =

min(Xk
i : ni = k) and Xk

i,max = max(Xk
i : ni = k), for k ∈ {1,2}, as the minimum and

maximum payoffs of player i when taking action k, respectively.
Following the results of Ref. [2], player i can fix the long-term average of its game

payoff regardless of the game actions of the other players if ki,max,ki,min ∈ {1,2}
exist such that Xkmax

i,max ≤ Xkmin
i,min. In this case, the long-term average payoff of player i,

termed ui, can be any value in the interval [Xkmax
i,max,X

kmin
i,min], and this long-term payoff

can be achieved using the strategy of:

pk
i = 1+

bi

ui
(ui −Xk

i ) (7.28)

as the probability of choosing action 1 when the state of the game is k where bi
depends on the value of ki,max [2].

Given the N SUs in the communication system and for SU1 being the controller
user, SU1 takes actions whether to transmit over the wireless channel following the
zero-determinant strategy described above. To meet the QoS constraints of PU, SU1
conducts a zero-determinant transmission strategy as follows:

• Calculate the N × N payoff matrix of PU given the outage probabilities as
demonstrated in Figure 7.4

• Verify if Xkmax
1,max ≤ Xkmin

1,min
• Define the long-term target of PU’s outage probability in the range
[Xkmax

1,max,X
kmin
1,min] as

u1 = Xkmax
1,max +α1

(
Xkmin

1,min −Xkmax
1,max

)
(7.29)

• Select b1 given the value of k1,max
• For each transmission interval ∆T :

– Determine the previous ∆T ’s transmission state, k
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– Determine the previous ∆T ’s game payoff of SU1, Xk
1

– Transmit over the wireless channel with probability (7.28)

pk
1 = 1+

b1

u1

(
u1 −Xk

1

)
. (7.30)

As evident from the above description, the N-user case is a natural extension of the
2-player case detailed in Algorithm 3.

7.7 NUMERICAL RESULTS
To validate the proposed approach, we investigate key metrics and relations through
two sets of simulations results: (i) numerical results of the analytical solution for dif-
ferent sets of parameters and (ii) simulation results to verify the analytical approach.

The primary user’s outage probability in Eqs. (7.1) and (7.4) is numerically in-
vestigated in Figure 7.5. Figure 7.5a shows the case when there is no secondary
transmission, and it confirms that ζ0 = 1− exp( 1−2Rp

PP/σ2 ) increases as SNR decreases
and/or when Rp increases. Similarly, during secondary transmission, the primary out-
age probability in Figure 7.5b and c increases when the secondary interference and/or
the noise power increases.

The relation between p1 (SU1’s Active probabilities) and α (persistence factor)
and β (steering factor) is investigated in Figure 7.6. For this figure, Pp

Ps2
= 11.25 dB,

Pp
Ps1

= 10 dB, Pp
σ2 = 20 dB, and Rp = 1 bit/sec/Hz are used. We observe that α has a

direct impact on p1 as defined in Eq. (7.17). However, the impact of the value of β

on p1 is affected by the specific value of α as demonstrated in Eqs. (7.18)–(7.23).
We then simulate a communication environment that has two IoT devices modeled

as SUs and a PU of the channel as illustrated in Figure 7.2. For this environment,
PU’s outage probability is not to exceed ζ = 12.5%; also, Pp

Ps2
= 11 dB, Pp

Ps1
= 10 dB,

Pp
σ2 = 15 dB, and Rp = 1 bit/sec/Hz. Also, SU2 (the opponent user) transmits data
randomly over the shared wireless channel with probability of 50%. In addition, SU1
(the controller user) adopts the transmission strategy in Algorithm 3 with α = 0.5
and β = 0.5. Adopting the zero-determinant by SU1 leads to developing the payoff
matrix found in Figure 7.7. Also, SU1 chooses uX = 11.1%, which is less than the
maximum PU outage constraint of ζ = 12.5%. From Eq. (7.17), the transmission
probabilities for SU1 become

p1,1
1 = 0.575 p1,2

1 = 0.947
p2,1

1 = 0.053 p2,2
1 = 0.500.

(7.31)

With uX < ζ , using the IoT transmission strategy, SU1 is able to meet the QoS con-
straints of PU regardless of the transmission activity of SU2 (the opponent user).

Sample long-term performance metrics are captured in Figure 7.8 of this simu-
lation environment. Figure 7.8a illustrates the attained value of uX over time, which
reflects the resultant outage probability of PU due to the IoT transmission activity;
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(a) (b)

(c)

Figure 7.5 Outage probability of primary user of the system versus different communication
parameters. (a) Outage probability of the primary user vs. SNR and primary transmission rate.
(b) Outage probability of the primary user for SNR = Pp/σ2 = 10 dB. (c) Outage probability
of the primary user for Rp = 0.5 bit/sec/Hz.

the results here show how SU1’s transmission strategy meets the QoS requirement
regardless of the transmission activity of SU2. Figure 7.8b shows that the probability
of SU1 being Active in a game round is about 53.8% which is equal to (p1,1

1 + p2,2
1 )/2.

Figure 7.8c and d show the long-term channel capacity for the primary user and the
IoT of interest, respectively. These figures demonstrate the advantage of the proposed
strategy where the average channel capacity of PU is shown to be better than the case
when both IoT devices simultaneously transmit over the wireless channel. Also, the
proposed algorithm has the advantage of providing uncoordinated transmission over
the channel enabled by local information gathered by the users of the system.

Finally, Figure 7.9 considers the multiple-user case and illustrates the effect of
increasing the number of IoT devices on the performance metrics. The parameters of
simulation environment are Rp = 1 bit/sec/Hz, Pp

σ2 = 20 dB; Pp
Ps1

= 10 dB, Pp
Psi

= 20 dB
∀i ∈ {2, . . . ,N}, α = 0.5, and β = 0.5. One observation here is that the communi-



182 Internet of Things Security and Privacy

0 0.2 0.4 0.6 0.8 1

Persistance Factor 

0

0.5

1

A
ct

io
n

/I
d

le
 P

ro
b

ab
il

it
y

p
1

1,1

p
1

1,2

p
1

2,1

p
1

2,2

0 0.2 0.4 0.6 0.8 1

Steering Factor 

0

0.5

1

A
ct

io
n

/I
d

le
 P

ro
b

ab
il

it
y

p
1

1,1

p
1

1,2

p
1

2,1

p
1

2,2

(a)

(b)

Figure 7.6 Active & Idle probabilities of the primary user of the system versus α (persistence
factor) and β (steering factor). (a) Active & Idle probabilities of the primary user for β = 0.5.
(b) Active & Idle probabilities of the primary user for α = 0.75.

Figure 7.7 Calculated payoff matrix for the primary user for the four combinations of Active
& Idle.

cation system experiences soft limit behavior where increasing the number of IoT
devices in the system gracefully deteriorates the performance metrics of the system
even though the channel access is uncoordinated.

7.8 DISCUSSIONS AND CONCLUSIONS

In this chapter, we present a framework to investigate dynamical interaction between
the IoT devices when accessing a shared wireless channel that is licensed to a pri-
mary user. In contrast to coordinated channel access schemes where the “winner
takes all”, we employ valid constraints on uncoordinated transmission cycles and
data availability to propose an uncoordinated IoT transmission strategy to optimize
information availability.
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Figure 7.8 Long-term performance of the primary user showing different metrics including
average outage probability and channel capacity. (a) Average payoff (i.e., outage probability of
the primary user). (b) Probability of the IoT device of interest being Active in a game round.
(c) Average channel capacity of the primary user. (d) Average channel capacity of the IoT
device of interest.
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Figure 7.9 Impact of number of secondary users on the performance metrics of the algo-
rithm. (a) Impact on the outage probability of the primary user. (b) Impact on the probability
of the IoT device of interest being Active in a game round. (c) Impact on the channel capacity
of the primary user. (d) Impact on the channel capacity of the IoT device of interest.
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In the proposed framework, IoT devices do not need to know the full transmission
history of the other devices in order to employ the transmission strategy and satisfy
the QoS constraints. In addition, an IoT device perform transmission actions based on
available channel-access information from the previous transmission interval. Hence,
IoT devices benefit from an uncoordinated spectrum-sharing channel-access model
while maintaining quality-of-service (QoS) constraints.

The proposed approach of using cognitive communications for IoT industrial
WSN enables extending the number of secondary unlicensed users sharing resources
with a primary user within allowed “soft” constrains. This approach to scaling can
be related to CDMA scalability approach where increasing number of users softly
deteriorates the system performance.

Numerical and simulation results illustrate the benefits of the proposed model in
achieving data availability through uncoordinated IoT channel access. The proposed
communication model appears suitable for settings like industrial wireless sensor
networks with limited-resource IoT devices. Future extensions of this work will in-
vestigate how this model can be extended for sensor/actuator IoT devices requiring
bi-directional communication and data availability requirements.
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8.1 INTRODUCTION TO RBMs AND AUTOENCODING

Restricted Boltzmann machines, more commonly known as RBMs, are undirected
graphical models that are used as an integral part of the deep learning framework.
RBMs were initially introduced in 1986 by the name Harmonium by Sumit Misra
[1]. One of the most recent uses of RBMs was in the Netflix Prize; it outnumbered
the competition in collaboration and filtration of data. The RBMs algorithm is used to
reduce dimensionality, regressed classification, collaborative filtering, feature learn-
ing, and top modeling. RBMs algorithms work by learning first and then providing a
closed-form depiction of the distribution pinpointing the observation. It is also used
as a comparison of unseen probabilities of the observation alongside a sampling of
learned distributions. A good example of this would be when we can repair some
units that are seen and that correspond to a partial observation and then proceed
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to sample the remaining units that are visible for completing the observation. Even
though RBMs were introduced back in the 1980s, with the technological advances
their use is more relevant now. RBMs gained a lot of popularity in recent years after
they were proposed for being used as the foundation of multi-layer learning systems
known as deep belief networks. The concept behind this is that invisible neurons
extract the features most relevant to the observation. These features can further be
used as inputs to other RBMs. When RBMs are stacked like this, they can lead to
exponential learning of multiple features that can help in reaching higher levels of
representation.

Now, this brings us to the question of what autoencoders are. The simple explana-
tion would be that autoencoders are a simple three-layer neural network. In this net-
work, the output units directly connect with the input units. The number of invisible
units in autoencoders is lower than the visible units, and the task of learning/training
is to reduce errors when reconstructing, which means figuring out the most efficient
and concise representation of output data.

RBMs share a similar belief; however, it utilizes imaginary units with a particular
distribution rather than predetermined distribution. The main thing is to figure out
how these two variables are connected to each other. One of the main features that
differentiate RBMs and autoencoders is that RBMs have two very distinct biases [2]:

1. The invisible bias assists the RBMs to create activation on the forward pass.
2. The second bias is that the visible layers’ biases aid the RBM determine

reconstructions on the backward pass.

The rest of the chapter is organized as follows: Section 8.2 presents the back-
ground; Section 8.3 describes the malware attack detection using cyber-physical sys-
tem (CPS). Section 8.4 discusses fraud and anomaly detection. Section 8.5 presents
breakthroughs in CPS and their findings, while Section 8.6 discusses the presence of
CPS as critical in the modern world, and Section 8.7. presents the evolution of CPS
and its associated impacts. Section 8.8 concludes the study.

8.2 BACKGROUND
8.2.1 TARGETED PROBLEMS USING RBM’s AND AUTOENCODERS

Most recently RBM models are directed toward the recognition, prediction, and clas-
sification of information. In recent years RBMs have been used for face recognition
and detection. This helps in getting better results as compared to the latest modern
techniques. RBMs can create deep systems for learning features. In simple words,
the visible layer of the RBM model is the images, and the invisible layer will be the
information for useful features. The input layer transmits image data to the invisible
layer, which forces the hidden layer to describe it back to the input layer. However,
in this environment, the invisible or hidden layers are restricted, which means that
nodes in the concerned layer are unable to communicate with each other; they can
only communicate with the nodes of the input layer. The input layer utilizes some
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loss of function to explain how badly the hidden layer is doing and suggest improve-
ments to each node accordingly. We believe that after sufficient training passes, each
node in the hidden layer will be able to focus on specific image characteristics that
contain information and explanation of the images. Another way to think of this is
to imagine that one node could learn to focus and determine the color of the eyes,
another node could learn to focus on the shape of the lips, and so on.

The RBM model takes each visible node while simultaneously taking a low-level
feature from a dataset to be learned. Node 1 is the invisible layer where x is multiplied
by a weight and included in the list of biases. The result that is generated from this
calculation is used to utilize an activation function, which further produces the output
for the node and/or how strong the signal passing through it will be, as long as the
input is x. When we have multiple inputs, we would combine them at one single
hidden node. The same concept of multiple nodes with x and a separate weight will
apply. The products are added and included in the bias, resulting in an activation
function and producing the node’s output.

Another targeted problem solved by RBMs is classification in statistics. Clas-
sification is the problem of identifying what sub-categories a particular observation
belongs to, for example, classifying emails into spam and non-spam categories or as-
signing a diagnosis for a patient based on specific characteristics (e.g., gender, age,
blood type, and the presence or absence of particular symptoms). An RBM algorithm
implements classification referred to as a classifier. The term classifier refers to an
RBM algorithm that maps input data to an output category.

Autoencoders are also used to reduce dimensionality, which means autoencoders
are used as a pre-processing step for dimensionality reduction for performing fast
and accurate reduction in dimensions without losing too much information. Certain
dimensionality reduction methods can only perform linear dimensionality reduction,
whereas complete autoencoders can perform larger-scale more nonlinear reductions
in dimensionality. Another problem solved with autoencoders is the de-noising of
images; they achieve this by not distinctly searching for the noise, unlike traditional
methods; instead, they extract the image from noisy data which has been fed as an
input through a learning representation. Once the input process is complete, the rep-
resentation is decompressed to achieve a result of a noise-free image. Autoencoders
are also commonly used to generate data for both image and time series. This is done
by creating a distribution parameter at the bottleneck of the autoencoder which can
be sampled at random to achieve discrete values to latent attributes that are then for-
warded to the decoder, which results in the generation of image data. This can also
be applied to model time series data like music.

TensorFlow [3], a deep learning library, and Scikit Learn, a machine learning li-
brary [4], both were implemented in the experiment discussed as follows: The exper-
iment employed a seven-layer autoencoder with a 28-dimensional input that passed
through a ten-neuron input layer that connected a ten-neuron layer to a five-neuron
hidden layer. As an activation function, rectified linear units (RELUs) were utilized
between the many layers of the autoencoder. A gradient descent technique was used
to train the autoencoder.
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Self-driving cars are another innovation that is powered by artificial intelligence.
The designers of autonomous cars employ numerous data from image recognition
systems along with machine learning techniques and neural networks to power au-
tonomous driving cars. Neural networks identify trends in the dataset, which are used
as input for machine learning algorithms. The input data include images from the in-
built cameras on self-driving cars of other cars on the road, pedestrians, traffic lights,
streetlights, and other important things the autonomous car needs to look out for on
the road [5].

Over the recent years, we have seen an increase in the number of attacks taking
place on CPS resulting in exponentially harmful consequences. Some of the com-
mon forms of cyber-attacks are eavesdropping, where secure information is inter-
jected and a third party can listen to important and confidential information being
transmitted, leading to a violation of security and in some cases even more serious
consequences affecting numerous individuals [6].

Supervised learning and unsupervised learning are the two basic types of deep
learning methodologies. The use of labeled training data is the difference between
these two methodologies. Convolutional neural networks (CNNs) [7] that use labeled
input belong within the category of supervised learning, which uses a particular ar-
chitecture for image recognition. Deep belief network (DBN) [8], recurrent neural
network (RNN) [9], autoencoder (AE) [10], and its derivatives are examples of un-
supervised learning approaches. Following that, we go over some recent research
that is similar to our work, most of which is based on the KDD Cup 99 or NSL-KDD
datasets [11]. The NSL-KDD dataset has been used in studies on intrusion detection
[8,12,13]. In a software-defined network (SDN) context, Hnat et al. [8] employed
deep neural networks (DNNs) to create an anomaly detection model. They used six
fundamental features from the NSL-KDD dataset’s 41 features to train their model.

After dimensionality reduction, they utilized DBN to extract features for intru-
sion detection and SVM to categorize the data. When compared to employing SVM
or DBN as independent classifiers, the researchers’ hybrid DBN + SVM technique
improves the detection performance. To detect zero-day attacks with high accuracy, it
is suggested that two deep learning-based anomaly detection models employ AE and
denoising AE. They also employed a stochastic strategy to establish the threshold
value that has a direct impact on the suggested models’ accuracy [13].

Another example is self-taught learning (STL), which is an effective and adapt-
able NIDS that combines a sparse AE for unsupervised dimensionality reduction
with SoftMax regression to train the classifier. In two-class, five-class, and 23-
class classification problems, our technique demonstrated satisfactory classification
accuracy.

8.2.2 TECHNIQUES USED FOR CYBER-PHYSICAL SYSTEMS USING
RBMs AND AUTOENCODERS

With technological advancements, businesses and government organizations are
moving toward using online platforms for transactions and storing data on cloud
servers, also known as e-commerce. These technological advancements have
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improved the productivity of banks, telecommunication companies, retail stores,
health insurance, and other online businesses. However, along with improving pro-
ductivity, it has also led to these businesses becoming more susceptible to hackers
and other fraudsters. This has resulted in increased financial fraud and loopholes in
cybersecurity.

Deep learning has empowered security in cyber-physical systems, by creating
fraud detection models. These models work with biased data along with any insignif-
icant features present in the input. These multiple attributes present themselves as an
obstacle for the classifier to properly learn from multiple sources of data. Figure 8.1
shows an example of a basic four-input neural network.

To solve these problems, a dual-step method was proposed, and this method is
split into two stages; in the first stage, a lesser dimension of features is taken from
the input, and in the following stage, the model determines whether the transaction
was a fraud or not. Simultaneously, a model for determining fraud is proposed based
on autoencoders, where they extract important features from the input pool of data
preceded by an algorithm used for classification. To detect credit card fraud, the
method focuses on debit and credit card transactions. A transaction can have multi-
ple sources that take into account the time and amount of the transaction, whether the
transaction was a deposit or withdrawal, details of the customer, and/or not limited
to the location of the ATM. These numerous attributes can result in the bad per-
formance of algorithms. Since real transactions can have multiple features and high
dimensions of data, it makes dealing with some data tedious. The crucial objective is
to extract important data and remove the noise of extra data. To address these issues,
the researchers are using autoencoders that can efficiently make a low dimension of
the depiction of the input data while simultaneously having the ability to determine

Figure 8.1 Basic 1 middle layered neural network architecture [14].
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the nonlinear relation of features. Autoencoders depend on feed-forward neural net-
works that are further used for efficiently understanding encodings for training data.

The autoencoder network is equipped with the same source of input and output
amplitude. It helps to understand the data that are used as input into an invisible
depiction. With different amplitudes of the input and output data, it can reconstruct
the input from the invisible representation. In simple words, it tries to identify the
approximate function that has made the problem easier. However, by placing limita-
tions on the network and limiting the number of invisible units, the irrelevant solu-
tion can be discarded. A general structure of the autoencoder-based model is shown
in Figure 8.2.

An RBM is an artificial neural network technique, and it was at first designed
only for autonomous learning activities that exploited raw data to determine adapt-
able patterns. RBMs are energy-based models that also employ a layer of invisible
variables to model a distribution over visible variables [15]. Each variable can only
take a binary value of 1 or 0 as represented a variational approach to unsupervised
learning as shown in Figure 8.3.

RBMs are used as the foundation for deep Boltzmann networks. They rely on
the idea that concealed neurons extract relevant attributes from the features. Fur-
ther, these features are employed as input to another RBM. Hence, stacking RBMs
results in attributes learning from other attributes and resulting in a high level of
interpretation.

Figure 8.2 An autoencoder-based model for detecting fraudulent credit card transactions [1].
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Figure 8.3 Variational approach to unsupervised learning with “k” hidden variables and “n”
observed variables [11].

8.2.3 DETECTING NETWORK INTRUSIONS TO ENSURE
THE SECURITY OF CPS IN IoT DEVICES

Cyber-physical security is one of the major problems that we are facing in the 21st
century; one of the efforts to solve this problem utilizes intrusion detection systems
along with firewalls. The consolidation of these two systems helps prevent the leak-
age of information from web applications. The IDS method is based on two groups,
namely, detection of anomalies and signature detection. The signature approach is
simple and works effectively when it comes to detecting attacks. However, it is not
efficient in facing new attacks; on the contrary, anomaly detection approaches search
for a pattern that does not conform to the usual pattern – this is established via ma-
chine learning and pattern recognition methods. These designs can easily distinguish
new types of interference and detour from normal behavior. There is a set of steps
that are followed for anomaly detection, which include feature development, attribute
preference, and anomaly detection classifier. These characteristics increase in a di-
rect proportion to n of the n-gram model making it critical to contemplate results to
deal with dimensionality problems [16].

The Knowledge Discovery and Dissemination (KDD) dataset, 1999, is one of the
most widely used datasets for detecting any network intrusion [17]. The dataset was
generated for a competition and employs a dataset that contains over 4 million traffic
records. Unfortunately, this dataset does not include data on raw network traffic.
Based on the fundamental content type, and traffic type parameters, raw network
traffic data are reprocessed into 41 features. The dataset also contains 22 different
types of intrusions that may be divided into four categories: denial of service (DoS),
unauthorized remote access from machines (R2L), unauthorized access for a user
to root attack (U2R), and probe. Another examination reveals that the dataset has
several flaws. The counterfeit nature of the network and attack data, as well as lost
data due to advances and other imprecise definitions, are major contributors. There
are also a lot of unnecessary entries, which causes the data to be skewed; as a result
of these faults, a new dataset called NSL-KDD was proposed. This is also a common
technique for identifying network interferences.
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A few datasets consist of raw packet data, and the most widely used is the CTU-13
dataset [18]. This dataset comprises raw pcap files that identify the malignant, back-
ground, and normal data. The advantage of using raw pcap files as compared to the
KDD 1999 and NSL-KDD dataset provides parties the chance to pre-process, using
a larger number of algorithms. In addition to this, the CTU-13 dataset is unsimulated.
Botnet attacks take place, and the anonymous traffic is from a larger network with
no truth related to it. It is a mixture of 13 various sketches with multiple systems
and several contrasting botnets, which makes it a very complicated dataset. Domain
generation algorithm (DGA) detection has three prominent sources of data. Previ-
ously, machine learning research studies have shown a diversity of feature derivation
methodologies, and the DL algorithms are primarily dependent upon domain names.
This reflection can be seen in the three primary sources of DGA.

8.3 MALWARE ATTACK DETECTION
Malware attacks are the most common and continually increasing, which only makes
it more difficult to block them using conventional procedures. Deep learning offers
a chance to make generic models to find and analyze viruses automatically. This
can result in providing defense against minor malware using unknown viruses and
large-scale actors by employing innovative types of viruses to attack organizations
and persons. There are numerous ways to detect malware such as developing DL-
based detectors of hostile Android applications that use features from steady and dy-
namic analysis. Three key sources drive these features: static analysis with required
permissions, sensitive application program interfaces (APIs), and active behaviors.
In contrast, the vital behavior features are extracted from dynamic analysis where
information is collected from driodbox, which is an application sandbox for the op-
erating system of Android. These traits are further used as input data to DBN with
two invisible layers that achieve ∼97% accuracy, ∼98% TPR, and ∼4.5% FPR [18].
Multiple settings have been put to test, and out of all, the most consistent has been a
two-hidden-layer DBN.

This proves that variations are more dependable than static features, making API
calls, which are derived from running software in a sandbox, commonplace. Pascanu
et al. [19] constructed a viral detection system that combines RNNs in conjunction
with a multilayer perceptron (MLP) with regression models for classification. RNN
has been instructed without supervision to predict the next API call. The proceeds of
the invisible RNN serve as an input to the classifier after carrying out max-pooling on
the trait vector to avoid the potential reordering of temporal events. To make sure the
features contain cellular patterns, the invisible state from the middle of the sequence
and the final invisible state are used.

Kolosnjaji et al. [20], on the contrary, employ CNNs and RNNs to locate the virus.
A one-hot encoding is used to convert a sequence of calls to an API kernel into binary
vectors. One-hot encoding is a method for gathering and classifying data in a way
that is easy for machines to understand. The information gathered by this approach
is then utilized to train deep learning algorithms that include CNN and RNN, as well
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as LSTM or SoftMax layer. Others have also employed API calls to create a deep-
learning virus detector [21], which employed autoencoders with a sigmoid grouping
layer for the task and attained ∼96% accuracy.

8.4 FRAUD AND ANOMALY DETECTION
Credit cards were originally introduced to the banking industry a little more than
10 years ago. Credit cards are now a common method of payment for online pur-
chases of goods and services. The users used these credit cards to make personal
payments and other online transactions. As a result, the bulk of malware attacks
has concentrated on template matching, which finds unusual patterns as opposed to
regular transactions. Many methods for identifying fraudulent activity have been in-
troduced in recent years. We will discuss these methods in detail in the coming para-
graphs [13]. Credit card fraud can be detected using various methods ranging from
generic machine learning models to state-of-the-art deep learning-based methodolo-
gies. One such method is the use of K-nearest neighbor (KNN) algorithms. This is
a technique for supervised learning. By computing its nearest point, KNN is used
to classify credit card fraud detection. If a new transaction is carried out, and the
point is close to a fraudulent transaction, KNN classifies it as fraud [22]. The terms
K-means and KNN are not interchangeable, and K-means clustering is an unsuper-
vised learning approach. By clustering the data into groups, K-means aims to find
new patterns in the data. In contrast, KNN is the number used to classify or forecast
a new transaction based on the previous history by comparing the nearest neighbor.

In KNN, the distance between two data instances can be determined using a vari-
ety of methods, the most common of which is the Euclidean distance. KNN is a great
resource. Defining the threshold K is the most difficult component of this process.
We can use a high percentile of the data distribution if our data collection contains no
anomalous cases. We can develop a validation set and optimize the value of threshold
K on it if we have at least some anomaly examples in our data collection [23]. Over-
all, the network training and threshold K definition is a reasonably simple and quick
operation, with a proper classification rate of 84% for fraudulent transactions and
86% for “regular” transactions. However, more effort could be done to increase per-
formance, as is customary. The network parameters, for example, might be improved
by experimenting with other activation functions and regularization parameters, in-
creasing the number of hidden layers and units per hidden layer [23].

Outlier detection is another way of unsupervised learning by which malicious ac-
tors can be detected. The controlled outlier identification approach analyzes the out-
lier using the training dataset. The unmonitored biometric system, on either hand, is
similar to categorizing data into many groups based on their features. In Ref. [22], the
authors mentioned that unsupervised-learning outlier detection is preferable as com-
pared to supervised-learning outlier detection for identifying credit card fraud since
outlier detection does not require pre-existing information to label data as fraudulent.
As a result, using example transactions, it is trained to classify between legitimate
and illegitimate transactions [22] as shown in Figure 8.4.
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Figure 8.4 Analysis of credit card fraud identification techniques based on KNN and outlier
detection [22].

One of the most advanced and evolving approaches is computer vision, which
is a cutting-edge approach that has grasped the IT community’s interest recently.
Deep learning revolves around several hidden layers that increase the complexity of
the model beyond human comprehension. In contrast, feed-forward computational
models feature only one hidden state. Deep learning refers to multilayer neural net-
works. Many deep learning approaches, including AE, deep convolutional networks,
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support vector machines, and others, can be used. The main challenge with selecting
an algorithm is that one must first comprehend the underlying problem and the goals
of each deep learning approach for a specifically targeted problem.

There are no consistent patterns in fraudulent activities. They constantly alter their
behavior, necessitating the use of unsupervised learning. Fraudsters gain access to
new technology that enables them to commit scams via internet transactions. Con-
sumers’ habitual behavior is assumed by fraudsters, and fraud trends very quickly.
Because some mischievous outfits conduct frauds once using online channels and
then transition to other ways, fraud detection systems must detect online transac-
tions using unsupervised learning [13], and a comprehensive comparison of various
approaches used for fraud detection in CPS is presented in Table 8.1.

Table 8.1
Deep Learning-Based Methodologies on Autoencoder and Restricted
Boltzmann Machine for Fraud Detection in Cyber-Physical Systems

Methodologies Advantages Limitations

K-nearest neighbors
algorithm

The KNN method is simple to
develop and can be used to detect
anomalies in the target instance

With memory constraints, the KNN
approach is ideal for detecting
fraud

Hidden Markov
Chains (HMM)

At the time of the transaction, HMM
can detect fraudulent activities

With only a few transactions, HMM is
unable to detect fraud

Neural network Neural networks can detect real-time
credit card scams since they have
learned previous behavior

There are numerous sub-techniques in
neural networks. As a result, if they
discover something that isn’t ideal
for detecting credit card fraud, the
method’s performance will suffer

Decision tree Nonlinear credit card transactions
can also be handled by decision
tree

Decision trees can be built using dif-
ferent induction algorithms such as
ID3, C4.5, and CART, and they can
have a variety of input features. As
a result, the disadvantages include
how to set up an induction method
to detect fraud. DT is unable to
detect fraud in the middle of a
transaction

Outlier detection
methodology

Outlier detection uses less memory
and processing to detect credit
card fraud

For huge online databases, this strategy
is quick and effective. Other meth-
ods, such as outlier detection, are
incapable of accurately detecting
anomalies

Deep learning Deep learning has several
advantages, one of which is the
ability to analyze and learn from
large amounts of unsupervised
data. It can extract complex
patterns

Deep learning is now widely employed
in the field of image recognition.
There is no information available
to explain the other domains. The
deep learning library does not
include all algorithms
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Even in the absence (or with very few examples) of fraudulent transactions, the
neural autoencoder provides a wonderful chance to create a fraud detector. The con-
cept comes from the subject of anomaly detection in general, but it also works well
for fraud detection [23].

Only regular data, in our case, and legitimate transactions are used to train a neu-
ral autoencoder with a more or less complicated architecture to reproduce the input
vector onto the output layer. As a result, the autoencoder will learn to reproduce
“normal” data properly [13].

The autoencoder’s reconstruction of the input vector can be failed due to the
anomalies. As a result, if we calculate the distance between the original data vector
and the reconstructed data vector (the authors used a mean square distance), anoma-
lies will have a considerably bigger distance value as compared to normal data. This
is based on the distance between the input vector and the reconstructed output vec-
tor, and we can identify possibilities for fraudulent transactions. In terms of a rule,
if the distance value exceeds a certain threshold K, we have a fraud/anomaly candi-
date [23].

By incorporating a bias in the definition of threshold K, the entire process might
be driven to lean more toward fraud. In some cases, it may be preferable to ac-
cept a higher number of false-positive check-ups than to miss even one fraudulent
activity [22].

8.5 BREAKTHROUGHS IN CPS AND THEIR FINDINGS
Scientists define cyber-physical security in different ways, and these definitions are
usually based on their scientific perceptions. As we have already understood in the
earlier text that CPS integration is based on numerous fields of science and engi-
neering, cyber human systems (CHS) can be used to understand information at every
stage as humans we have an inherent intelligence. This intelligence is easily mis-
used for self-adaption, remedial, and precautionary actions. Integrating the element
of nature and humanity is not an easy thing to recreate. CPS consists of two basic
components; the first is a connection that guarantees real-time data collected that is
gained from the physical world and then transmitted back as feedback received from
cyberspace. The second component is managing intelligent data, analyzing, and com-
puting capabilities that are used to construct cyberspace. To develop and deploy CPS
for manufacturing, the 5C structure is used as a benchmark [23]. The 5C structure is
explained in Figure 8.5.

The first and foundational step for creating an application for a cyber-physical
system is to gather correct and reliable data from an engine and its parts, known as
smart connections. The next step is to extract useful results from the information, for
which there are several tools and concepts present for data conversion to information;
this step is described as data-to-information conversion. The information collected
and extracted in the first two steps then has to be accumulated as a center of informa-
tion for this design through a network of machines. Then, we apply CPS using the
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Figure 8.5 The 5C structure depicting the five-level hierarchy of employed during the
deployment of a CPS [23].

results in a knowledge system that is monitored, and lastly, configuration assessment
from cyberspace is implemented to tangible space. This physical space behaves as a
managerial control for the self-configuration and self-adjustment of machines.

8.5.1 AIM OF A CPS-BASED SYSTEM

A CPS-based system aims to deploy the integration of cyber-physical and cyber hu-
mans – making the role of humans critical in the industry. Currently, the said technol-
ogy is used for medical treatment, electricity power supply, smart homes, transporta-
tion, and agriculture. The power system used typical information fusion systems that
can be characterized by bringing together physical systems and information systems.

The CPS structure is aimed at completely understanding and reflecting informa-
tion and physical processes [8]. In the agriculture sector, a recent method of agricul-
tural development is known as precision agriculture, which is a smart system that is
supported by information technologies [8]. Precision agriculture is mainly impacted
by factors that are not easy to predict as it is almost unattainable to create a system
of linear differential equations. CPS has evolved and becomes an integrated system
that provides discrete solutions through a hybrid system that can gather information
from the external world and relate real-time and intelligent control to the real world,
thus making the application of information a great success in the field of agriculture.

8.5.2 BREAKTHROUGHS IN CPS-BASED SYSTEMS

Other breakthroughs of CPS are seen in the field of medicine as the living stan-
dards of individuals become better because they start taking health more seriously.
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Increased attention is being paid to research based on solving serious and new health
issues. Medical CPS is an intelligent and network-based high technology-based sys-
tem to ensure the safety of patients. This brings us to the point where knowledge
needs to be controlled along with computers and medicines, for example, demon-
strating a CPS application used to detect the state of a patient’s breathing and breath-
ing machine. A study was conducted on a medical device, which was a plug-and-play
system used in laser tracheotomy. The field of medicine has evolved to become a field
of increased research directed at using CPS [9].

Even though there are multiple ways and tools available which can be used for
detecting threats, however, many of these tools have different skills resulting from
the lack of a uniform approach and analysis, and because of these differences in the
CPS, the generic modeling tools were not applicable [10]. Furthermore, maintaining
security in CPS decision control systems including home security systems is a chal-
lenge that needs to be resolved [24–28]. We have already concluded that the CPS
has an assortment of characteristics. The understanding of how communication of a
CPS network system also has numerous network technologies such as Wi-Fi, inter-
net, and wireless sensor networks. To achieve real-time and reliable interconnections
and cooperation among different networks, there is still room for development and
problems to be solved.

The testability of CPS is missing from the widely accepted validation standard.
It is difficult for a CPS design to assess and confirm each component. It is also dif-
ficult to research a heterogeneous model’s authentication mechanism and put it into
practice for sophisticated heterogeneous systems. The macro lab has been chosen as
CPS’s core programming and verification environment, with promising results [8].

Because of CPS’s complex and diversified properties, the system’s security re-
quirements have been raised. Individuals’ livelihoods are dependent on system se-
curity, particularly in medical treatments, electricity, transportation, and other areas.
Physical dangers and other threats posed by the area of information are the main
sources of concern for CPS. The physical domain is primarily for the physical threat
of assault, with the local node domain information and communication network at-
tack being the primary threat. The current technology is insufficient to ensure good
CPS security.

8.6 ENSURING CPS IS CRITICAL IN THE MODERN WORLD
CPS is still a relatively recent research area in the global information economy, and
it has a significant impact on existing structures. Developing CPS is still in its early
stages, regardless of whether you are based at home or overseas, and many challenges
must be overcome. The future holds enormous promise in terms of CPS technology
research and development, with an emphasis on system creation and modeling, veri-
fication, heterogeneous network difficulties, mass heterogeneous data processing and
security, and much more.

Although 20th-century scientific advancements provided us with good approaches
and instruments for building computational and physical systems. Designing a
cyber-physical system is more than just combining two disciplines. Knowledge
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professionals have always had a vague awareness of the demands placed on them
by the physical world. Mechanical, civil, and chemical engineers, for example, have
viewed computers as instruments for solving algorithms while disregarding the phys-
ical properties of embedded computing systems. This has progressed to the point that
it is now being used in the construction of cyber-physical systems. We will be able
to construct new machines with complicated dynamics and excellent dependability
due to a new discipline called cyber-physical system design. It will open the way for
the reliable and cost-effective application of cyber-physical system principles to new
sectors and applications.

However, over the last decade or two, we have accumulated a substantial body of
evidence that supports the separation of information and physical sciences. For ex-
ample, in most programming languages, the prevailing abstractions avoid explicitly
representing time and other physical values, instead of grouping relevant physical
design factors under the category of non-functional needs, which includes timing,
power, and dependability.

On the contrary, engineering is increasingly relying on computer-based imple-
mentation, and systems have developed and evolved abstractions that disregard the
quiet aspects of computation and communication. This inevitably acts as a barrier
around systems and computer science, preventing the communities from combining
their knowledge and, as a result, partitioning education into isolated disciplines, giv-
ing rise to segmented design flows that have resulted in substantial problems and
failures as complexity grows. The current industrial experience demonstrates that
our understanding of how one should collect computers and physical systems has
reached its limits. We must continue to construct systems with our restricted methods
and tools to adequately address issues for people and establish predictable systems.

8.7 EVOLUTION OF CPS AND ITS ASSOCIATED IMPACTS
Cyber-physical systems cover a wide range of application areas; we can use new
scientific technology and technological understanding of interactions of processing
information, networks, and physical processes. The new science of CPS will have
a wide range of applications that will assist specializations and additions to specific
application domains. This innovative technology of CPS will permit users to design
systems more economically by using both abstract knowledge and advanced tools.
It could also lead to the development of more reliable CPSs, which will allow us to
apply benchmarked practices to a whole range of cyber-physical applications [12].

The use of CPSs in the real world is something that is of great importance to us
in the 21st century, and CPSs can be utilized in controlling industrial systems. These
control systems can optimize the production process while simultaneously oversee-
ing other systems such as sewage systems or nuclear plants or irrigation plants used
for agriculture purposes. The CPS controller apparatus can have multiple functionali-
ties that will allow it to work in coherence and result in better more efficient reporting
of outcomes. Currently, different connections are being used to bridge the gap, be-
tween these apparatuses, and between the virtual and real world. If there was ever a
situation where the power grids were hacked and security was compromised, the end
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user could lose power and power-providing companies would bear a financial loss; to
avoid a situation like this, incorporating CPSs for virtual security has become a more
crucial need. Most CPSs are not designed while prioritizing security as they are usu-
ally not interlinked with the internet, which ultimately makes tangible security the
easiest way to keep customers safe; however, as technology advances, we are observ-
ing an increasing demand to incorporate virtual security to keep customers data safe
from any type of criminal activity. As the use of the internet becomes more common,
ensuring the safety of users will become more difficult and require state-of-the-art
algorithms to accomplish this [13].

In the near future, we can see CPS will be beneficial for preventing chaos, which
is ensured due to natural calamities; multiple technological resources support swift
evacuation; an example of such systems would have been developed in the COVID-
19 pandemic when the world was affected in a dire way; a CPS could have helped
gauge and monitor the spread of the virus and created hot spots to alert people from
avoiding certain areas where the virus was spreading faster than other areas. This
could have resulted in better controlling the situation and controlling the number of
impacted individuals.

Another way CPS is used today is in AI-powered dash cameras that are com-
monly used in the trucking industry across the United States. These cameras help
predict and prevent incidents before they happen, by providing managers in a truck-
ing company with data regarding the behavioral trends of truck drivers. The algo-
rithms learn what behaviors are safe and what behaviors are considered risk factors
or unsafe and accordingly record video footage and upload it to the cloud notifying
managers and allowing them to improve the safety of their fleets by using coach-
ing and mitigating the chances of future collisions. The CPS can also be used to
help transport companies manage their fuel costs, the system has been designed in
a way to calculate the optimal fuel usage for a particular vehicle type and generate
reports to provide insights into whether the vehicle in consideration is utilizing fuel
efficiently or not – minimizing the cost of companies and ultimately maximizing
profits [13].

With the fast-paced economy, the attributes of CPS can come in handy to busi-
nesses across the board as it provides us with an opportunity to receive information
in real time and minimize the time it takes to decide. Humans today are hungry for
information; we want to know everything that is going on around us and this infor-
mation can only be accessed through solutions offered by the CPSs. Today, it is much
harder for a criminal to get away undetected; with our smartphones and social media,
monitoring our every move and storing data to analyze and make customer experi-
ences better, it is almost impossible to go undetected. The concept of big data also
revolves around the relationship between the physical world and the non-physical
world where our search histories determine our likes and dislikes and consequently
present us with the options for food, travel, movies, etc., best suited to our person-
alities. We often wonder how when we are staying someplace and suddenly all the
advertisements on social media are started to come related to that place and we ul-
timately assume to think that our smart devices are listening to our conversations or
keep eye on us – however that is not the case. The bridge between the physical and
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cyber world has become so small that now when we connect to a Wi-Fi connection
that belongs to a friend or a family member, we start seeing advertisements for the
items or brands they’ve searched. This proves how CPSs can be used to fuel mar-
keting campaigns and help companies reach a wider audience. Businesses that are
investing in the CPS are gaining benefits with a high market share [29].

Although most of the uses of the CPSs have positive results, unfortunately, they
can also be used for destruction and war. Wars are being fought using drones in to-
day’s day and age – these drones are controlled using cyber-physical systems, they
can identify and disengage weapons from a distance without being noticed, and they
are used to attack threats and even high-profile individuals. The use of such drones
has ultimately led to anti-drone systems which have the main responsibility of pre-
venting drone attacks, basically fighting machine against machine. This also raises
the concern of infiltration into sovereign states and waging war without being de-
tected – making the need for both physical and cybersecurity even more imperative.
In the old days, armies were responsible for the security of a state, today we have
surveillance cameras and drones that monitor any shady activity while also being
prepared to attack or respond to an attack. Drone used for spy purposes also poses
a serious threat to national security as these drones can go undetected by regular
radars, which means countries not investing in updating their systems are prone to a
technological threat at any given time [30].

Air transport will also see innovation at a large scale, even though currently air
transport is considered one of the safest means of travel, but with CPS integrations
air transport has room to develop and become even safer. With advancements in
technology, we are looking at satellite monitoring real time of all airborne bodies.
All aircraft and airports will be connected through a next-generation smart system
which will make air travel less time-consuming, more efficient, and less harmful to
the environment. CPS will encourage more automation in terms of air control and
communication between the personnel on the ground and airborne. We are looking
at balancing the roles of humans and machines, with a CPS, a lot of intricate aspects
of air control that could be overlooked by human error will be monitored with more
detail, making air travel and communication safer and more reliable. These advanced
systems will also make maintaining the maintenance of aircraft more streamlined as
we will be utilizing aspects of the human mind and machine capabilities in congru-
ence eliminating the risk of human errors and accidents [31].

8.8 CONCLUSION
The plan of developing a more reliable CPS is the need of the hour. Development
of a robust CPS requires continuous investment and collaborations to build systems
that are domain and application-specific to solve a particular problem that may in-
clude fraud detection, network anomaly, and network intrusion detection to name
a few. Ensuring IoT security through the employment of advanced CPSs will pro-
vide enhanced security to venerable systems. Cyber-physical systems are hetero-
geneous mixtures. They are a synthesis of computing, communication, and physical
dynamics. They are more difficult to model, develop, and analyze than homogeneous
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systems. Because software interacts with physical processes in cyber-physical sys-
tems, the sequence of events in software can be significant.

Therefore, having a robust CPS that is based on state-of-the-art algorithms is ex-
tremely important. Improvements need to be made in CPS currently present to ensure
an enhanced level of access protection to sensitive and vulnerable networks.

Investments in understanding and leveraging CPS are required to build advanced
and reliable systems to monitor security and ease life by moving away from tradi-
tional methods and tools. Moreover, governments need to actively invest in a cyber-
physical infrastructure that will operate more effectively and reliably. This will help
serve the issue of both CPS technologies and enable increased use of cyber-physical
techniques in other parts of the economy.
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9.1 INTRODUCTION

The Internet of Things (IoT) is one of the essential areas that refer to the new multi-
domain technologies to transmit data in real time. It consists of a global network of
millions of physical devices in different places connected to the internet, collecting
and sharing data, while having the ability to interact with each other [1]. This envi-
ronment consists of devices and services and provides advanced levels of services.
IoT systems now have a significant impact on how people manage many of their daily
tasks in a more effective and efficient manner [2]. The scope of IoT applications is
diverse, encompassing several aspects of human lives, such as smart cities, buildings,
home automation, and wearable devices [2]. Integrating IoT technology in these dif-
ferent aspects has transformed the conventional ways of object functionality, which
means more monitoring, communication, information sharing, and decision coordi-
nation with other nodes on the network. Recent studies show that the total number
of interconnected devices in the IoT devices and units reached ∼24 billion devices
in 2020 [3].

Preserving data privacy in the IoT environment is a substantial challenge consid-
ering the high volume of transmitted and shared data between the different devices.
The implementation of effective data-preserving methods requires high-end require-
ments in terms of storage, time, and energy consumption [4]. Moreover, most of
the services offer vague terms and conditions that may ask users to agree to aban-
don their privacy and data protection and allow these service providers to use their
metadata for commercial purposes, such as data analytics. Therefore, it is essen-
tial that users be fully aware of why, when, and for what reasons their data are be-
ing collected [5]. The IoT poses a significant challenge to the confidentiality of big
data either generated, transmitted, or stored via IoT objects. To address this concern,
privacy-preserving methods aim to maintain significant accuracy levels in analyzing
such sensitive data using machine learning algorithms. Nevertheless, the volume and
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veracity of such data remain an obstacle to achieving this goal. One of the fields that
is being used intensively in this area of research is privacy-preserving data mining
for big data, which has proved that it can preserve data with satisfactory accuracy
levels [6]. This chapter presents a novel approach for privacy-preserving data gener-
ation through generative models. This approach has gained popularity as an effective
method of fitting generative models into real-life data generation problems. Recent
studies show a promising trend for using these models due to their empirical per-
formance. Those models are used to estimate the underlying distribution of a dataset
and randomly generate realistic samples according to their estimated distribution [7].

Studies also show the potential of using such generative models in typical uses
such as designing useful cryptographic primitives [8]. These models also proved
superior in different fields and are widely used in biology and medicine to gener-
ate biomedical data [9]. However, using traditional generative models provides no
guarantee on what the synthetic data reveal about participants. It is possible that
the generator neural networks could learn to create synthetic data that reveal actual
participant data. We will employ this type of generative model to create privacy-
preserving techniques and produce data that could achieve privacy protection levels.
In addition, these generative models provide a good advantage for analysts; it en-
ables them to generate an unlimited amount of synthetic data for arbitrary analysis
tasks without disclosing the privacy of training data. To achieve good performance,
data mining methodologies require a significant amount of training data. However,
collecting such data from specific domains (e.g., medical data) is often impractical
due to privacy and sensitivity concerns. This makes building high-quality data ana-
lytics models a challenging task. Generative models provide a promising direction to
alleviate the data scarcity issue. These models learn from the original data distribu-
tion and generate more samples for analysis studies. Generative adversarial networks
(GANs) have demonstrated good performance in modeling the underlying data dis-
tribution [10]). This has been achieved by combining the complexity of deep neural
networks and game theory to generate high-quality “fake” samples that are hard to
be differentiated from real ones [11].

9.2 IoT ARCHITECTURE AND APPLICATIONS
IoT architecture consists of three layers; the first layer is the perception layer, also
known as the sensor layer, which is implemented as the bottom layer in IoT ar-
chitecture. This layer interacts with IoT physical devices and components through
smart devices (e.g., RFID, sensors, and actuators). The main objectives of this layer
are to connect nodes into an IoT network, to collect, process, and measure the state
information associated with these nodes by the deployed smart devices. The pro-
cessed information is then transmitted to the upper layer via a layer interface. The
middle layer is the network layer, also known as the transmission layer. This layer re-
ceives the processed information transmitted by the previous layer, “i.e., perception
layer,” and determines the routes to transmit the data and information to the IoT hub,
devices, and applications via integrated networks. This layer consists of integrated
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devices such as hubs, switches, cloud computing components, gateways, and vari-
ous other communication technologies, such as Wi-Fi, long-term evolution (LTE),
Bluetooth, and others.

Thus, it can be inferred that the network layer is the primary layer in the IoT ar-
chitecture. Using interfaces and gateways, this layer transmits data from/to different
applications among various networks and uses different communication technologies
and protocols [12]. The third layer is the application layer, which represents the top
layer in the IoT architecture. This layer provides services and operations according to
the network layer’s data; therefore, it is sometimes known as the business layer [13].
This layer encloses several applications such as smart grid, smart transportation, and
smart cities, while each application encompasses different requirements [14].

The development of industry-oriented and user-specific applications is facilitated
by IoT technologies. IoT applications need to ensure that devices receive data/mes-
sages and then act upon them properly on time. For example, FedEx uses Sense
Aware to monitor the packages when it is opened and whether it was tampered with
along the way and track the temperature, location, and other “vital” signs of the
packages. Data visualization, on the contrary, is not necessary for device-to-device
applications. However, in interactions with the environments, it is necessary to pro-
vide human-centered IoT applications to present information to end users in an intu-
itive and easily understandable way. IoT applications need to be built so that devices
can monitor the environment, identify problems, communicate with each other, and
potentially resolve problems without the need for human intervention [1].

9.3 LIMITATIONS AND CHALLENGES
IoT devices are uniquely identified. This usually creates security, privacy, and trust
threats putting all connected devices at risk, thereafter, causing harm to the users of
such devices. Since IoT devices collect personal information, such as user identity,
location preferences, and activities, privacy threats are a major concern. The data
collected can potentially disclose sensitive users’ information and monitor their ac-
tivities, even across other devices, thus compromising privacy through this data link-
age process. To mitigate this problem, trust models should be built to avoid exposing
data to public or private servers.

Privacy risks affect the adoption of IoT technology. For more control on data dis-
closure, data aggregation mechanisms and access policies represent prevention tools.
Resource limitations are the main reason for the adoption of default privacy settings.
However, there are three main technical limitations on the ability to secure the IoT
environment. The first limitation is the heterogeneity of IoT systems, which com-
plicates protocol design and system operations. The second is the scarcity of CPU
and memory resources, which limits the use of resource-demanding crypto primi-
tives, such as the public-key cryptography, which is used in most internet security
standards. The third limitation is the end-to-end IoT-oriented security measures.

The aforementioned limitations can be listed under technical limitations in IoT
architectures. There remain different types of privacy challenges that must be taken
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into consideration when addressing IoT structures. In this chapter, besides addressing
some of the technical limitations, we are also focusing on several privacy challenges
that are associated with the following threats:

• User identification: It is the ability to distinguish an entity or reveal his iden-
tity based on related data “identifiers and Quasi-identifiers” (e.g., name, ad-
dress, or any other personal information). The wide adoption of IoT makes
it easy to collect large amounts of data beyond users’ control. Thus, multi-
ple types of risks such as profiling and tracking individuals’ behavior would
appear. For example, many platforms’ developers use machine learning tech-
niques to infer personal information about users’ interests and use this infor-
mation to flood the user interface with targeted advertisements [15].

• User tracking: This risk primarily depends on the previously mentioned
threat, “i.e., User Identification, “ but this threat is based on location. This
threat occurs when the data about a specific user are collected and then used
to track users’ behavior. After the user is identified, their location is also iden-
tified with their locations’ history, which enables tracking. For example, the
user who uses location-based services is required sometimes to share his loca-
tion. So, sometimes tracking his location happens without his explicit consent
and knowledge. Positioning techniques, which are based on global position-
ing systems (GPS), GSM RFID, and wireless LAN, also have a huge effect on
tracking the users. This technology raises concerns about location privacy in-
trusion. Since personal information, including users’ location, is collected by
IoT devices and services, this information could be abused or sold to third par-
ties for targeting advertisement purposes, and more seriously, some criminals
may take advantage in exploiting such data and performing types of criminal
activities that might compromise individuals’ lives.

• Profiling: It is the process of recording and analyzing data to characterize per-
sonal behavior. This is used to assess or infer individuals’ interest in a par-
ticular domain or group purposes. The rising number of internet-connected
systems and the evolution of data mining algorithms and tools significantly
contributed to the emergence of collecting users’ big data. This was achieved
using different data mining tools that establish a clear description of the cus-
tomer needs and easily provide detailed customer profiles. Target advertise-
ments, website personalization, and service matching are increasingly using
profiling as a core advantage to enhance their business. Profiling can help learn
and estimate the individuals’ political and religious views and assess medical
conditions [3]. This information about individuals can be shared without cus-
tomers’ consent, leading to privacy violation of the customers. So, limiting
access to confidential information in the IoT environment will preserve the in-
dividual’s privacy; however, it may negatively affect the accuracy of the data
mining processes.

• Utility monitoring and controlling: This is related to the data collected about
customers. Sensitive information can be used to infer users’ life patterns, which
cause privacy threats if acquired through unauthorized access, especially when
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attackers get access privileges and use it to control usage in different IoT
domains without the user’s knowledge or permission. There are four main IoT
domains, namely, home, enterprise, utilities, and mobile. At home applications,
Wi-Fi is used, which provides high bandwidth and plays a significant role in
video streaming services, and supports high sampling rates for audio stream-
ing as well as control of appliances such as air conditioners, refrigerators, and
washing machines [3].

9.4 IoT PRIVACY: DEFINITIONS AND TYPES
IoT aims to improve the overall quality of human lives by enabling a plethora of
smart services in almost every aspect of our daily activities and interactions. This
section provides a comprehensive overview of the most crucial privacy techniques
that are widely used to preserve IoT data. Moreover, we also illustrate how different
algorithms work, their applications, and the impact of each algorithm on both privacy
and utility (data usefulness).

When discussing privacy, the concepts that illustrate it vary. In our context, we
will use the privacy definition that was used in the Internet Security Glossary, which
defines data privacy as “the right of an entity (normally a person), acting on its own
behalf, to determine the degree to which it will interact with its environment, in-
cluding the degree to which the entity is willing to share information about itself
with others”. From a broader perspective, privacy consists of seven main categories.
These categories start with the privacy of the person, which includes his body func-
tions and body characteristics (such as genetic codes and biometrics); privacy of
behavior and action, which is associated with the individual’s rights to maintain the
confidentiality of their habits, political activities, and religious practices; privacy of
personal communication, which includes any interception of any person’s forms of
communication, such as mail or phone calls, either through recording or interception;
privacy of data and images, which includes any information and images, or videos
related to the person; privacy of thoughts and feelings, which addresses the balance
of power between the state and the person; privacy of location and space; and, lastly,
privacy of association [16]. Nevertheless, privacy concerns in IoT environments ex-
tend beyond just the users who are actively connected to the internet; it may also
impact individuals who are present in the IoT environment but are not using any IoT
services. As internet applications constantly capture data flow, it becomes crucial to
implement a reliable authentication procedure to prevent potential privacy violations.
However, achieving this in an IoT setting can be challenging, and it is important for
IoT environments to maintain individuals’ privacy. Any data collected must only be
used for its intended purpose and stored only for as long as necessary.

9.5 GAN FRAMEWORK
In recent years, machine learning has emerged as a crucial aspect of computer sci-
ence development and data generation. It has become an integral part of the artificial
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intelligence (AI) community’s efforts to enable machines to comprehend the com-
plexities of the world in the same way humans do. As machine learning algorithms
rely on data representation, scholars have proposed learning approaches to improve
data generation [17]. Deep learning is one such approach used to augment data repre-
sentations for machine learning algorithms. This approach involves creating simple
representations that can extract high-level abstract features that surpass those ex-
tracted by other methods [18]. These learning approaches can be categorized into
two groups: supervised learning with labeled datasets and unsupervised learning
with unlabeled datasets. Generative models are a class of technology that employs
unsupervised learning. These models apply a range of techniques, including Markov
chains, maximum likelihood, and approximate inference for data generation [19].

There are three main categories of generative models, namely, GANs, variational
autoencoder (VAE), and autoregressive networks. VAEs are probabilistic graphical
models that aim to depict the probability distribution of data, leading to generating
samples that tend to be noisier than those generated by GANs. On the contrary, au-
toregressive networks such as PixelRNN tackle image generation by predicting and
generating pixels one by one, which makes the process slower compared to GANs
that can process samples all at once. GANs, as a type of probabilistic generative
model, utilize an internal adversarial training mechanism that works well even with-
out knowing the density of probability [19].

The initial generative models faced limitations when it came to the generalization
process. In 2014, Goodfellow proposed a new generative model, which addressed
these issues. The GAN is an example of a generative model that takes a training
dataset with samples from a distribution and learns to estimate that distribution by
creating a probability distribution model. Some models explicitly estimate the dis-
tribution while others only generate samples from it, and some models can do both.
The fundamental concept of GANs involves two networks: the generator and the
discriminator. The generator creates samples that come from the same distribution as
the training data, while the discriminator distinguishes between real and fake samples
and learns using supervised learning techniques by classifying the inputs into either
real or fake [10]. The framework of GANs is composed of two deep neural networks:
the discriminator, which can be thought of as a policeman and the generator, which
can be thought of as a counterfeiter attempting to create fake money. Each of these
networks is represented by a different function controlled by a set of parameters. The
generator is trained to deceive the discriminator, much like the counterfeiter attempts
to fool the policeman into accepting their fake money.

Training examples are randomly sampled from the training set (x) and used as
inputs for the discriminator function D. The discriminator produces a probability
output that describes whether the input is real (with a probability close to 1) or fake
(with a probability close to 0), assuming that half of the inputs are fake and the
other half are real. The discriminator’s objective is to produce probabilities that its
inputs are real (D(x) close to 1). The GAN framework uses different loss functions
to estimate the loss of the discriminator and generator. The generator function may
vary across different frameworks, but the discriminator functions remain the same.
One function that can be employed to compute the loss of the generator is the zero-
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sum game, where the loss of both the generator and discriminator within any given
framework is equivalent to zero, leading to the following result:

J(G) = −J(D). (9.1)

An alternative formula used to estimate the generator’s loss in non-zero-sum frame-
works involves a method that employs cross-entropy reduction for the generator.
Rather than inverting the cost of the discriminator to determine the generator’s loss,
the target utilized to construct the cross-entropy loss is inverted instead. The resulting
loss for the generator can then be obtained as:

J(G) = −1
2 ∑

z
logD(G(z)) . (9.2)

Frameworks with zero-sum costs are often referred to as min-max, as they involve
minimizing in the outer loop and maximizing in the inner loop. This approach has
been extensively employed to demonstrate the learning capability of GANs.

9.6 RESEARCH OBJECTIVES
The aim of this chapter is to explore a novel mechanism that utilizes GANs to develop
a privacy-preserving solution for IoT data. The proposed approach is designed to
minimize the likelihood of breaching the original data or any portion of it. There are
several related studies to our approach, and readers are encouraged to read the works
in Ref. [7,20,21].

The exponential growth of IoT ecosystems has given rise to a significant surge
in the generation and exchange of sensitive data between different devices making
it challenging to maintain individuals’ privacy. Furthermore, most publicly avail-
able datasets used by researchers are insufficiently anonymized and can reveal sensi-
tive information about individuals. Despite the existing research efforts on privacy-
preserving data mining techniques, the use of GANs for privacy preservation is still
relatively nascent. To address the primary research objectives outlined in the previous
section, we have formulated the following research questions:

• RQ1: How effective is the use of generative adversarial networks (GANs) in
generating anonymized datasets from the original IoT data?

• RQ2: What is the level of accuracy achieved in the generated datasets com-
pared to the original dataset? To address this question, we conducted exper-
iments to generate anonymized datasets using GANs and evaluated our pro-
posed model. These experiments aimed to determine whether our approach
provides better preservation of privacy compared to other existing methods.
We measured both privacy and utility loss to assess the effectiveness of our
method.

9.6.1 LIMITATION OF THE SCOPE

GAN has recently attracted researchers due to its performance as a generative model.
This model is used to estimate the underlying distribution of a dataset and randomly
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generate realistic samples according to their estimated distribution. This threatens the
data’s privacy if exposed to this type of processing, as it will lead to data disclosure of
many sensitive data related to individuals. Due to all the above, we are going to apply
a privacy-preservation mechanism using GAN. Moreover, it has become a promising
approach that enables analysts to generate an unlimited amount of synthetic data for
analysis tasks without disclosing the privacy of training data.

Our GAN model is designed to handle two class labels at a time when generat-
ing datasets, which can be challenging for datasets that feature more than two class
labels. Therefore, datasets containing multiple class labels need to be transformed
into binary classes, resulting in a less accurate distribution for any of the classes
compared to the distribution of the whole dataset.

9.7 LITERATURE REVIEW

9.7.1 DATA ANONYMIZING

Various methods have been proposed to ensure the privacy of static data, which is
not subject to the same challenges faced by streaming data. This can be referred
to as the need for incremental analysis of data streams, the limited time and buffer
space used, and the ever-evolving nature of the data streams in general. In Ref. [22],
the authors tried to take advantage of tracking the correlation and autocorrelation
structure of the multivariate data stream by introducing an algorithm that is aiming to
provide a prominent level of privacy. They created their approach by adding random
perturbation to the data stream, which preserves its statistical properties.

The study by Alcaide et al. [23] created an approach to enhance the privacy
elements along with the security properties of the IoT data. They focused on the
anonymity of the IoT users and the unlinkability of their interactions during deal-
ing with physical objects in the cyber community. They were motivated to guar-
antee that the use of sensitive information will not be violated and disclosed. The
authors provided a fully decentralized anonymous authentication protocol to design
a framework of decentralized founding nodes that present the participant’s role in
the ad-hoc community. This type of model is self-adaptive and target-driven, which
adapts to the changes in the communities’ behavior and serves common interests at
both small and large communities. They have used the participants’ indications and
application feedback to promote behavioral changes in IoT communities. The main
feature of this model is decentralization, so it is appropriate to be applied to any type
of organization and to be set up based on the organizations’ rules and regulations.

The authors in Ref. [24] relied on the k-anonymity principle and introduced a
privacy-preserving algorithm to protect users’ locations. Their proposed algorithm
is implemented for the secure use of location-based services based on the entropy
metric and the obtained information. The enhanced version of the dummy-location
selection algorithm works on selecting a dummy location based on enlarging the
cloaking region to guarantee the separation of the locations as far as possible.

The study by Wang et al. [25] evaluates attribute-based encryption (ABE) as a
privacy-preserving solution. ABE is considered a type of public-key encryption. It



216 Internet of Things Security and Privacy

is characterized by allowing access control and flexibility of the keys’ exchange.
The assessment procedures include network delay, control overhead data, CPU pro-
cess, memory, power usage, and execution time.

The traditional solution for preserving data privacy is based on hop-by-hop or
end-to-end encryption, which is now not efficient for protecting the data from any
external threat. The authors in Ref. [26] proposed an encryption schema for secur-
ing the collaboration of IoT objects by homomorphic encryption that combines the
fully additive encryption with the fully additive secret sharing to fulfill the required
properties. Their proposed schema is built based on the elliptic curve cryptography
augmented with threshold secret sharing to ensure the confidentiality and integrity
of the collected data. This solution focuses on securing the part related to collect-
ing the data from the IoT objects to use it by a variety of applications connected to
the IoT environment. The solution considers the case where the aggregation function
executed by the gateway relies on the additional operator over multiple variables.
The major challenge for the gateway in this scenario is to perform operations on the
aggregated information without breaking the confidentiality enforced by the source
encryption at the device level. This allows the combination of two interesting prop-
erties, which are privacy preservation and cost-efficiency (in terms of bandwidth).

Different privacy models have been proposed for protecting big data, including
static data and data streams. Using statistical disclosure control methods (SDC),
these models can be enforced to protect private data against re-identification dis-
closure. The authors in Ref. [27] provided a primitive called steered micro aggrega-
tion that is generated to be a general mechanism and considers the emerging con-
straints. The proposed approach can handle and process both types of big data by
adding weighted and proper attributes which are designed in specific ways. They
also showed how t-closeness for static data and k-anonymity for data streams could
be achieved by adding these artificial attributes using various models. The experi-
mental results of t-closeness enforcement showed sensitive data controlling within-
cluster variability. This mechanism also allowed other privacy models to be satisfied
under specific conditions such as differential privacy.

It is known that IoT devices and transactions are subject to violations by several
attacks (i.e., tracking and profiling). The authors in Ref. [28] developed a privacy-
preserving method in intelligent transportation systems depending on the game the-
ory between data holder (i.e., driver and intelligent devices) and data requester DR
(i.e., employer and supplier). The new technique considers environmental properties
such as power, memory, and communication regarding the suitable level of cryp-
tographic mechanisms. The set of cases is defined for DH and DR and used the
Markovian chain to model the transitions. A utility function is used to assess the
tradeoff between the privacy characteristics to decide whether there is a disclosure
of the sensitive data or not.

The study of Ref. [29] developed a privacy-preserving solution for IoT healthcare
big data systems using access control techniques. The main objectives are obtain-
ing secure healthcare data in two scenarios (i.e., normal and emergency) along with
smart de-duplication of the big data system. To view sensitive patients’ data over
the IoT communication network, the proposed solution encrypts data and sends it to
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the storage system. Healthcare staff, in several levels, are granted an access control
policy to manage access to information. The classical access control methods allow
authorized users to get the information but prevent first-aid treatment in emergency
cases. This study adopted a new method consisting of two access control levels; for
normal cases, secret keys will be employed to decrypt data. While in emergency sce-
narios, the patient’s data will be retrieved by a password-based break-glass access
method. Also, the proposed method reduces the required memory and removes the
duplicate patient files by adopting a secure de-duplication technique. The evaluation
results showed the high-security performance and effective feasibility of applying the
proposed solution. Their work, on the contrary, includes checking data integrity re-
motely which implies a trusted third party to oversee the outsourced data’s integrity,
which may be invalid in practice.

Zhao et al. [30] have proposed a schema that dispenses with the third party to
check data integrity. They have utilized a blockchain architecture to construct a
scheme for privacy-preserving remote data integrity checking in IoT information sys-
tems without TTP. This scheme leverages the lifted EC-ElGamal cryptosystem and
the blockchain to support efficient public batch signature verifications and protect
the IoT systems’ security and data privacy. This scheme is more suitable for practi-
cal applications in the data management systems without involving and resisting the
leakage of data privacy caused by the third party.

9.7.2 AUTHENTICATION AND AUTHORIZATION

Wireless sensor network (WSN) technology has been widely used in recent years
in several applications. To obtain the required security/privacy levels, several WSN
mutual authentication and exchange key protocols were proposed, and numerous
studies focused on the vulnerabilities of these protocols [31]. The study in Ref.
[32] conducted by He et al. highlighted several attacks for the existing protocols,
such as offline password guessing attacks, user/sensor node impersonation attacks,
and modification attacks. The authors presented a novel WSN temporal-credential-
based mutual authentication and key management approach. The assessment results
showed that this can be a new promising approach as it is an efficient solution for
power consuming and provides an acceptable security level for WSNs. The study
conducted in Ref. [31] also presents a high performance and new user authentica-
tion and a key management approach for WSN that is integrated into IoT. In their
proposed approach, users will authenticate a particular sensor node from heteroge-
neous WSN without calling the gateway node. Their approach depends on symmetric
cryptographic mechanisms and provides high efficiency.

The study of Ref. [33] shows the continuous efforts for enhancing the security
properties and efficient methods for combining wireless sensor networks (WSN) with
IoT. In Ref. [33], Farash et al. found that the approach by Ref. [31] is vulnerable to
some attacks. So, this study proposes an enhanced security approach. The authors in
Ref. [31] proposed a new method for privacy-preserving with novel functionalities.
The evaluation security results conducted using BAN-logic and AVISPA simulation
engines showed a remarkable level of security that prevents WSN attacks. Perfor-
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mance comparisons yielded more hash computation costs done by the user or at the
gateway node. Moreover, the proposed approach required less storage consumption
and gave dynamic growth of WSN without affecting the functionality or the authen-
tication process.

Privacy-preserving and efficiency are the major challenges of smart homes. Due
to the nature of communication between the components at smart homes via wireless
networks, the personal data can be exploited by attackers who can simply spy on the
data traffic between these components and, as a result, reduce their daily activities.
Considering these challenges, the authors of Ref. [34] proposed a work based on
certification authority (CA) as an authentication protocol for the sensors. Their work
discusses that all smart home entities should own a special CA and pass the priv-
ilege check to manipulate the other entities. This type of smart home design relies
on a trusted CA center, which has the privilege of assigning a newly registered en-
tity. Sensors are an integral component of smart home architecture, but their limited
computing capabilities render them inadequate for executing complex computational
processes. The emerging EU law has identified several regulations concerning users’
privacy provision. These laws provided that IoT users must consent to the services
that can interact with them and their data. To realize this, Kirkham et al. [35] sug-
gested extra data processing at the data collection stage. They explained the benefits
of using hybrid IoT data processing solutions as they are made for data filtering and
can be invested in privacy and service provision. They showed that the solution has
many networking benefits processing with the cloud, reducing the load produced
from extra processing places, and providing additional capacity from the cloud. As
a result, it reduces many of the problems that might appear, such as latency that will
be added to the sensor board’s operations and the bottleneck problem for the quality
of services.

Protecting user privacy in the IoT environment poses a significant challenge with
IoT sensors and devices collecting a massive amount of personal information about
users’ daily life without their consent. While service providers frequently require
users to explicitly define their privacy preferences, the limitation of the available
time to read consents, the lack of motivation, the cognitive burden of users, and the
restricted IoT user interface prevent users from making their privacy decisions re-
garding IoT services. To mitigate these issues, researchers have leveraged intelligent
systems equipped with machine learning to predict users’ privacy decisions in the IoT
environment and assist users in having suitable privacy preferences. For example, a
study by the authors of Ref. [36] tested 172 users in a simulated IoT and collected the
users’ opinions regarding their preferences about hypothetical personal information
tracking cases. The authors employed the K-modes clustering technique on the users’
answers. The obtained results indicate four distinguished clusters; in each of these
clusters, a relationship between IoT context and user attitudes was detected. Authors
applied to learn conditional inference trees to predict users’ preferences, and the
model yielded a prediction accuracy of 77% using a 10-fold cross-validation method.

The implementation of access control in an IoT environment faces two primary
challenges: the constrained nature of the smart objects and the risk of compromising
user privacy when involving third-party entities in the access control process.
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Ouaddah et al. [37] proposed a new decentralized pseudonymous and privacy-
preserving authorization management framework that can deal with IoT distributed
nature using fair access. Fair access is a distributed privacy-preserving access control
framework introduced as a balance solution for solving the problem of centralized
and decentralized access control that are using the cryptocurrency blockchain mech-
anism and allowing the users to identify and control their privacy level. In this pro-
posed framework, the authorization decisions are made by using a smart contract that
leans on policies of contextual access control, as well as being used for fine-grained
expression.

The enormous expansion of IoT-connected devices that collect sensitive informa-
tion about users and the environment around them makes it necessary for manufac-
turers to prepare and implement their Privacy Policy Agreement (PPA) for all their
respective devices. These policies include expressing what kind of information the
device collects, where these data are stored, and for what reason it might be used.
In the study conducted in Ref. [2], the authors showed that half of the manufactur-
ers to which the study was applied do not have a firm and specific privacy policy
for their IoT devices. They also tested the data transition between IoT devices and
the cloud and proved using specific privacy criteria that the communication between
these devices does not comply with what they are stated in their PPA.

In the same context, end-to-end authentication is considered a main issue in IoT
environments due to the technical differences between IoT devices and controllers.
In literature, we have several authentication protocols to guarantee security and pri-
vacy needs. The study in Ref. [38] presents an anonymous end-to-end mutual au-
thentication and key management approach depending on the ZigBee protocol. Zig-
Bee allows high-level communication by establishing personal networks that require
low power and digital radios suitable for smart home networks. The new protocol
employs secret key encryption to end-to-end IoT authentication process to achieve
confidentiality. The proposed method updates the session keys for each new com-
munication to obtain the anonymity, untraceability, and unlinkability of IoT devices.
It also uses HMAC technique based on a trusted incremental counter to obtain the
data integrity. The security is validated by BAN logic and assessed by automated
validation of internet security protocols and applications (AVISPA) toolset, which
indicates the safety of the proposed method.

9.7.3 EDGE COMPUTING AND PLUG-IN ARCHITECTURE

Several studies were conducted to address protecting users’ data privacy by investi-
gating on-device sensor abstractions for augmented reality applications and therefore
preventing these data from accidental leakage [39]. The efforts of the study come to
address devices and applications that have privileged access to raw sensor data [39].

In the area of data privacy protection, Al-Hasnawi et al. [40] introduced a solu-
tion to protect IoT users’ sensitive data, which contains personally identifiable in-
formation (PII) in its life cycle. The policy enforcement fog module is a proposed
module running to enforce privacy policies on sensitive data collected from different
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sources. Their proposed software module uses the power of policy enforcement at the
edge-fog infrastructure. Their scheme’s main idea is to protect the data from the mo-
ment it originated through the sensor until data destruction. This module deals with
two kinds of applications for data processing; the first one is the local and real-time
IoT applications, while the second one is remote fogs, clouds, and non-real-time
applications. The authors present a data privacy solution for each one of these ap-
plications. The solution uses policy enforcement directly on the collected IoT data
for local fog nodes closest to the data source. While the second type of applications’
problem is solved by using the active data bundle (ADB), a self-protecting construct
for remote applications. Their approach works in parallel with protecting data and
policy enforcement engine. It is created initially at the source node and automati-
cally enabled at the destination nodes [41].

Ant colony optimization approach is proposed by Lin et al. [42]. This approach
uses transaction deletion to secure confidential and sensitive information. Each ant
represents a set of possible deletion transactions used for hiding sensitive information
and securing the users’ identity. To assist the reduction of dataset scans in the evo-
lution process, the authors utilized the pre-large concept, and to find the optimized
solution, they adopted external solutions that discovered Pareto solutions.

9.7.4 USING GENERATIVE ADVERSARIAL NETWORK (GAN)
IN PRIVACY DATA ANALYTICS

In the massive growth of the data generated from multiple sources every second
in IoT environment, adversaries are mining private information for potential bene-
fits. To target this concern, Qu et al. [20] proposed a GAN-driven noise generation
method under a differential privacy framework. By adding a new perception of differ-
ential privacy identifier, the generator is forced to produce a differential private noise
and then the discriminator with the identifier gaming to derive the Nash equilibrium.

GANs and their variants are highly effective data generation models that can pro-
duce large amounts of high-quality data by learning the complex semantics of the
underlying data distribution from training data. However, the rise of memorizing
sensitive information from the training dataset and subsequently generating data that
pose a privacy risk remains a challenge for these models. Authors in Ref. [43] pro-
posed PPGAN, a privacy-preserving GAN, model that achieves differential privacy
in GAN by adding a well-designed noise to the gradient during the model learning
stage. To improve the stability and compatibility of the model, a Moments Accoun-
tant strategy is proposed and working on controlling the privacy loss.

A differentially private GANobfuscator was proposed by Ref. [7] to ensure that
critical information will not divulge when generating sensitive information. This was
achieved by adding a designed noise to gradients during the learning process. This
generative model is generating an unlimited amount of synthetic data for analysis
purposes and helps in preserving the privacy of the training data. The authors in
this study also developed a gradient-pruning strategy to improve the scalability and
stability of the data training when using the GANobfuscator.
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In the same context, the authors in Ref. [44] discussed the vulnerability in IoT de-
vices caused by increased network traffic and the expansion of IoT devices. They pro-
posed a robust approach based on deep Q-network (DQN) and GAN for unsolicited
proxy detection in IoT traffic. This approach is designed for discerning anomalies
and preventing unauthorized access to users’ information by an adversary and can
withstand malicious alterations of connection information. Their proposed approach
utilized the GAN discriminator as a target network for DQN to detect the proxied
requests/responses in the connection information.

Moreover, Wang et al. [21] proposed PART-GAN, a practical privacy-preserving
generative model for time series data augmentation and sharing. This model enables
the local data curator to provide a freely accessible public generative model from the
original data for cloud storage. This approach’s key advantages allow for generating
an unlimited amount of time series data under the condition of addressing incomplete
and temporal irregularity issues and with a given classification label. The suggested
approach provides a differential private time series data augmentation and sharing
technique. In addition, and by applying the optimization strategies, the authors tried
to address the trade-offs between utility and privacy.

9.8 OVERALL RESEARCH DESIGN
Figure 9.1 illustrates the overall conceptual design of our proposed solution. As
shown in the figure, in phase 1, the original data are generated from IoT devices
and represented in a dataset. Along with each record, we represent each record’s
activity label. Generally, we used the accelerations and angular velocity values gen-
erated from smartphone sensors (gyroscope and accelerometer); these values can be
processed and then used to learn more about users’ status [45]. In phase 2, we trans-
form the numerical representation of the acceleration and angular velocity values
into 0 or 1 representations. In the third phase, the dataset is generated, and the noise
is added using GAN. Finally, the generated dataset is released in order to be used in
data analytics and classification.

Data Samples: To generate a private dataset and evaluate our generative model,
we used the HAPT2015 dataset from Smart Lab, an Italian research laboratory for
computational intelligence and data analytics.

The HAPT2015 dataset is an activity recognition dataset consisting of recordings
of 30 subjects with ages ranging between 19 and 48 years [46]. These subjects were
asked to perform a protocol of six basic activities: three static postures (standing,

Figure 9.1 Overall research design.



222 Internet of Things Security and Privacy

Table 9.1
Characteristics of HAPT2015 Dataset

User Number ID Feature Vectors Activity Number ID

Consist of numerical
numbers between 1 and
30, and these numbers
represent the identifiers of
the subjects who did the
experiment

A 561-feature vector with time
and frequency domain
variables.

Features are normalized and
bounded within [−1, 1].

Each feature vector is a row on
the ‘X’ and ‘y’ files.

The units used for the
accelerations (total and body)
are ‘g’s (gravity of earth →
9.80665 m/seg2).

The gyroscope units are rad/seg

Identifiers of activity labels
represented with numbers
associated with it:

(Walking)
(Walking upstairs)
(Walking downstairs)
(Sitting)
(Standing)
(Laying)
(Stand to Sit) 8 (Sit to Stand) 9

(Sit to Lie) 10 (Lie to Sit)
11 (Stand to Lie) 12 (Lie to

Stand)

sitting, lying) and three dynamic activities (walking, walking upstairs, and walking
downstairs), in addition to postural transitions that occurred between the static pos-
tures (Stand-to-Sit, Sit-to-Stand, Sit-to-Lie, Lie-to-Sit, Stand-to-Lie, Lie-to-Stand).
These activities are recorded while the subjects are carrying a waist-mounted smart-
phone with embedded inertial sensors during the experiment execution. The embed-
ded accelerator and gyroscope of the device captured 3-axial linear acceleration and
3-axial angular velocity at a constant rate of 50 Hz. The sensor signals that are gener-
ated from (accelerometer and gyroscope) were pre-processed. The preprocessing was
performed by applying noise filters. Later, these signals were sampled in fixed-width
sliding windows of 2.56 seconds and 50% overlap (128 readings/window). Each of
these windows represents a vector of 561 features. In this research, we used the re-
sulting dataset that includes records of activity windows. Each record is composed
of the attributes as shown in Table 9.1: The subject ID, feature vectors, and the as-
sociated activity label. We extracted the first 100 feature vectors and their associated
activity label for each record and used them in our experiments.

9.9 METHODOLOGY
We used a labeled dataset in the data preparation phase, and then, we divided the
dataset into smaller subsets based on the activity label. In the next phase, we trans-
formed the dataset to be suitable for training and the generation of data using our
GAN structure. In the third phase, the proposed GAN was used to generate a dataset.
In the last phase, we evaluated the privacy and accuracy of the generated dataset from
GAN using differential entropy compared to the original dataset.
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9.9.1 DATA PREPARATION

The dataset of HAPT2015 consists of two splits: the first is the training dataset and
the second is the testing one. Nevertheless, since using the original dataset is not
suitable for our experiments, the training dataset with the testing dataset was merged
into one dataset of 10,929 records consisting of an attribute identifier for the subjects
who performed the activity. The total number of features was 103 feature vectors
along with their associated activity labels. The dataset was divided into six subsets;
each one consists of the records that are associated with two distinct activity labels
as shown in Table 9.2.

It was essential to transform the feature vector values for the 103 attributes to be
0 or 1. The values that are ranged in the period [−1, 0) are replaced with 0, and the
values that are ranged within the period [0, 1] are replaced with 1. The activity labels
are also masked with 0 and 1 values in each dataset. Table 9.3 represents the original
values and the transformed value for each dataset.

Dataset Generating with Noise Addition: In this phase we used GAN implementa-
tion to generate a noisy version of the dataset from the original one. The implemen-
tation of GAN supports both CUDA and CPU. In this research, the implementation
was built using CPU only. Figure 9.2 simplifies the structure of GAN to generate
a private dataset; the first part of the GAN represents the generator that is used to
generate fake records after noise addition. The generator is trained to generate noisy
records similar to the original records but are not easily distinguished by the discrim-
inator.

The second part of GAN is the discriminator, which is the second neural net-
work where they are responsible for distinguishing the adversarial records (i.e., fake
records) from the benign (i.e., real records). The generated dataset is built according
to the feedback sent to the generator each time the discriminator labels the generated
record as fake. The discriminator is fed with feedback at each training round where
the record is labeled as fake. This generation and distinguishing process is performed
until the last epoch of training.

Table 9.2
Dataset with Two Activity Labels

Dataset Name Activity Labels Number of Records

DS-1 (1, 2) 3,266
DS-2 (3, 4) 3,207
DS-3 (5, 6) 3,935
DS-4 (7, 8) 102
DS-5 (9, 10) 191
DS-6 (11, 12) 222
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Table 9.3
Dataset Value Transformation into 0–1

Dataset Feature Vector Feature Vector Activity Label Activity Label
Name (Original Value x) (Transformed Values) (Original Values) (Transformed Values)

DS-1 −1 ≤ x < 0 0 1 0
0 ≤ x ≤ 1 1 2 1

DS-2 −1 ≤ x < 0 0 3 0
0 ≤ x ≤ 1 1 4 1

DS-3 −1 ≤ x < 0 0 5 0
0 ≤ x ≤ 1 1 6 1

DS-4 −1 ≤ x < 0 0 7 0
0 ≤ x ≤ 1 1 8 1

DS-5 −1 ≤ x < 0 0 9 0
0 ≤ x ≤ 1 1 10 1

DS-6 −1 ≤ x < 0 0 11 0
0 ≤ x ≤ 1 1 12 1

Figure 9.2 Data generation framework.

9.10 DATA ANALYSIS AND INTERPRETATION
In this research, several evaluation metrics are used to test the accuracy and privacy
of the proposed solution. For testing the accuracy, we utilized several accuracy mea-
sures to validate the effectiveness of the data generation model such as TP rate, FP
rate, Precision, Recall, F-measure, classification accuracy.
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9.10.1 PRIVACY MEASURES

For measuring privacy, we utilized differential entropy to measure the privacy of
generated data. Conditional privacy is an average measure of privacy. It was proposed
in the context of distribution reconstruction after additive perturbation. This measure
is based on the differential entropy of random variables. The differential entropy of
A given B = b is:

h(A|B) =−
∫

ΩA,B

fA,B (a,b) log2 fA|B=b (a)da db (9.3)

where A is a random variable that describes the data, and B is the variable that gives
information on A.ΩA,B and identifies the domain of A and B. Therefore, the average
conditional privacy of A given B is:

∏(A|B) = 2h(A|B) (9.4)

9.10.2 ACCURACY MEASURES

The purpose of this measure is to calculate the classification accuracy (ACC) of each
ML algorithm, and it is calculated as:

ACC =
(TP+TN)

P+N
(9.5)

9.10.3 INCORRECT CLASSIFICATION

The purpose of this measure is to find out the misclassification rate of each of the
classes, and it is calculated as:

Misclassificationrate (MR) = 1− classificationaccuracy (9.6)

Precision:
− Precision of original vs. generated data = TP

TP+FP
(11)

9.10.4 F-MEASURE

We used this measure to find out the harmonic means of precision and recall mea-
sures.

F1 =
2TP

(2+TP+FP+FN)
(9.7)

9.10.5 PRIVACY

Differential entropy is an average measure of privacy initially proposed in the context
of distribution reconstruction after additive perturbation. The results of the dataset’s
privacy are evaluated with a fixed value of the latent vector and batch size, and the
number of the epoch is changed along the dataset generated.
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9.10.6 PRIVACY RESULTS USING DIFFERENT NUMBER OF EPOCHS

To evaluate our method in terms of privacy, the differential entropy of the gener-
ated datasets is calculated. The experiments run on three subsets. Table 9.4 provides
information about each subset.

Each experiment has generated 19 datasets with the same values of latent vec-
tor and batch, but with a different number of epoch values varying between 10 and
1,000. Table 9.5 presents the privacy values for the dataset generated from the three
experiments.

Table 9.4
X1 and X2 Subsets

Experiment Number X1 X2

1 DS-A DS-1
2 DS-B DS-2
3 DS-C DS-3

Table 9.5
Privacy Values Datasets Generated from Experiments 1–3

Experiment # # of Epochs Z Batch Size Experiment 1 Experiment 2 Experiment 3

.1 10 10 32 0.88 0.855 0.817

.2 20 10 32 0.90 1.000 0.826

.3 30 10 32 0.55 0.817 0.712

.4 40 10 32 0.63 0.778 0.807

.5 50 10 32 0.88 0.951 0.788

.6 60 10 32 0.92 1.03 0.778

.7 70 10 32 0.87 0.788 0.836

.8 80 10 32 0.61 0.788 0.530

.9 90 10 32 0.68 0.778 0.817

.10 100 10 32 0.76 0.996 0.884

.11 200 10 32 0.70 0.653 0.586

.12 300 10 32 0.63 0.759 0.568

.13 400 10 32 0.69 0.740 0.778

.14 500 10 32 0.62 0.701 0.826

.15 600 10 32 0.88 0.711 0.788

.16 700 10 32 0.55 0.653 0.857

.17 800 10 32 0.56 0.750 0.722

.18 900 10 32 0.59 0.644 0.586

.19 1,000 10 32 0.58 0.721 0.875
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After this experiment, we again revisit each of our research questions.

RQ1: To what extent is the use of generative adversarial networks (GANs) suit-
able for generating anonymized datasets from the original data?

Figure 9.3 illustrates the privacy of the three experiments based on the num-
ber of epochs. The number of epochs was selected using the state of the art
of the existing research. Privacy varies based on the number of epochs. DS-
2 records achieve the highest privacy values among the three datasets. A high
privacy value is also attained when the number of epochs were 60 and 100. The

Figure 9.3 Privacy when varying the number of epochs.

Table 9.6
KNN Classification Measure for Original and Generated Datasets

KNN Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Exp7 Exp8

Time original 7.3 3.1 0.87 0.55 0.7 1.1 1.3 1.6
Time generated 7.3 8.2 9.1 0.55 0.54 1 0.7 1.1
CA original 0.87 0.99 0.99 0.93 0.95 0.91 0.99 0.99
CA generated 0.81 0.99 0.93 0.98 0.97 0.90 0.98 0.99
AUC original 0.94 1 1 0.96 1 0.97 0.99 1.0
AUC generated 0.89 0.99 0.97 0.45 0.99 0.81 0.84 0.99
F1 original 0.86 0.99 0.99 0.93 0.95 0.91 0.99 0.99
F1 generated 0.81 0.99 0.92 0.97 0.97 0.88 0.97 0.99
Prec. original 0.85 0.99 0.99 0.94 0.95 0.91 0.99 0.99
Prec. generated 0.81 0.99 0.93 0.96 0.97 0.88 0.97 0.99
Recall original 0.88 0.99 0.99 0.93 0.95 0.91 0.99 0.99
Recall generated 0.81 0.99 0.92 0.98 0.97 0.9 0.98 0.99
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best privacy value is attained for DS-2 which equals 1.03. The lowest privacy
value attained was when the number of epochs equals 30 for DS-1. In addi-
tion, when the number of epochs was 80, the privacy value was 0.53 for DS-3,
which is the lowest privacy value for that dataset. The results clearly indicate
that there is a need for a fine-tuning mechanism to identify the best balance
between privacy and utility.

RQ2: How much accuracy is achieved on the generated datasets?
For investigating the classification of generated dataset from original

dataset, K-nearest neighbor classifier (KNN) is used. The results of the K-
NN classification are shown in Table 9.6. The results clearly indicate that our
method generates datasets that are comparable to the original dataset

9.11 CONCLUSION AND FUTURE WORK
The widespread use and integration of IoT in our daily lives have raised significant
privacy challenges on various levels, and privacy-preserving methods have been pro-
posed to address these challenges. In this research, a privacy-preserving GAN was
introduced to generate synthetic data for IoT environments. Our proposed approach
uses noise addition to achieve privacy while generating the dataset and then analyzes
the generated datasets using machine learning algorithms such as KNN. The results
showed promising accuracy and improved privacy.

For future work, we plan to investigate the performance of our method on a large-
scale data set and explore more advanced techniques to enhance the privacy level
of the generated datasets. We also aim to compare our method with other privacy-
preserving techniques and evaluate its performance in various IoT applications. Fur-
thermore, we will explore the possibility of incorporating differential privacy tech-
niques into GANs to improve the privacy level of the generated datasets. Overall, this
research provides a promising direction for preserving privacy in IoT environments
and can be extended to various applications that require data privacy.
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