
 1

Research open source software for building SOC

Description: Provide the document regarding the design choice for open source SOC.. The

document will include:

• Review of the open source software

• The system architecture for the proposed SOC

Introduction

Cyber attacks in manufacturing have proliferated across the globe, raising concerns

about Thai manufacturing whether to move toward industry 4.0. Promotion of industry 4.0

transformation often recommends digital technologies such as cloud computing, data

analytics, and Internet of Things. Cybersecurity, though an essential component, is not

addressed as much in the context of industry 4.0. Strengthening cybersecurity in manufacturing

means securing not only the IT (information technology) infrastructure, but also the OT

(operation technology) components such as machines, controllers, and shop-floor facilities.

To prevent and reduce impacts of cyber attacks in a factory setting, a complex real-time

monitoring and evaluation of cyber risks is necessary. Because the industrial communication

protocols consist of both proprietary and open standards, typical cybersecurity software tools,

which are suitable for a normal IT/enterprise environment, may not be sufficient to monitor

communication and data transfer among factory machines. While large manufacturers can

invest in such complex security prevention services, either internal or outsourced services,

small and medium manufacturers cannot afford to invest in neither internal nor outsourced

cybersecurity services. Such a gap in cybersecurity affordability creates a kind of digital divide

which is not healthy in today’s global supply chains where large and small manufacturers

must rely on one another.

An alternative solution to defense against both internal and external threats either

come from enterprises or industrial factories is to develop and implement Security Operations

Center (SOC) [1, 2, 3] for taking in charge of monitoring, analyzing, and mitigating the incoming

threats. In general, SOC is the term used to describe activities that span (1) securing a portion

of cyberspace, (2) monitoring and analyzing threats and incidents, (3) proactively protecting

against the emerging threats, and (3) responsively managing and recovering from the incidents.

In the core part of SOC, Security Information and Event Management System (SIEM) has been

 2

integrated as a centralized control point where all security notifications from various

technologies including firewall, Intrusion Detection and Prevention systems (IDS/IPS), and anti-

virus logs are collected, analyzed, and virtualized. In other words, it acts as a log management

software specialized in security, which connects the endpoint security tools like firewalls and

IDS/IPS, collects their log files, evaluate the security level of the organizational network, and

provides alert information to the involved parties in case security threats have been detected.

Thus, the effective operation of SOC in an organization is dependent on how well the SIEM

can filter log events and generates actual alerts. Here lies the major problem faced by SOC

analysts in detecting threats [4]. If proper alert correlation is not accomplished, analysts would

have to deal with a large number of alert noise due to a high false positive detection rate.

This would ultimately cause analysts to miss critical security incidents, thus resulting in a

negative impact to the organization. On the one hand, the performance of a SIEM can be

enhanced through adding external functional components such as threat hunting, threat

intelligence, malware identification and prevention for reducing against false positive alarms.

On the another hand, a machine learning technique can be applied to increase the accuracy

and efficiency of the overall security operations process of the SOC system.

Laying down a foundation to develop and implement SOC, it can roughly classified

into five components (as shown in Figure. 1).

Figure 1: SOC components which comprises of the following components: (1) Assets identification and log forwarding, (2)
Logs & event management, traffic analysis, and threat detection, (3) Threat intelligence and pattern correlation database,

(4) Alert policy, and SOC workflow

 3

1. Assets identification and log forwarding: It collects data assets from various security

devices, monitors and analyzes these information. Then, it issues the alert results in

case the potential attacks, information security incidents, or even compliance issues

have been detected. Based on assets identified from the data collection process, data

assets will be grouped into categories. The study will explore an appropriate integration

approach to connect each type of data source to the centralized logs and

management systems as well as present guidelines for managing the addition or

removal of the assets from the SOC system.

2. Logs & events management, traffic analysis, and threat detection: These

functionalities are typically performed by an automated Security Information and

Event Management (SIEM) software. Comparative analysis will be conducted on open-

source SIEM tools to evaluate capabilities and performance. Finetune adjustment will

be performed to ensure the selected SIEM are interoperated with the factory

environment and settings.

3. Threat intelligence and pattern correlation database: Potential threats will be

identified to create initial data of threat intelligence and pattern correlation database.

The design will also consider supporting connection with external threat intelligence

feeds for catching up with the new type of cyber attacks and capability to plugin to

support the addition of other SOC components or plugin modules to support more

sophisticated functionalities, such as User and Entity Behavior Analytics (UEBA).

4. Alert policy: This can be used as a standard guideline in defining security policies and

validating non-compliance of all networking resources deployed within an organization

network.

5. SOC Workflow: SOC model will be customized to suit operation in factories by

simplifying from the full-fledged SOC. Guidelines on the structure of the incident

response team will be defined (e.g., roles, responsibilities, number of people required).

An incident response plan will be developed as a minimum practice to ensure an

adequate protection level is met.

In the following, we will discuss in more detail about the available open-source

software examples that have been widely deployed to build a powerful SOC system with

the purpose to collect, analyze, detect, and react against cyber-attacks.

 4

1. Central Log Management and processing pipeline

It can be impossible for admins to individually check every logs for all networking

devices deployed across their environment. Thus, Central Log Management (CLM) [5, 6] is built

as a part of SOC system that can enable admins to easily monitor their networking

environment by tracking key metrics and change activity. It is a type of logging solution system

that consolidates all log data and forwards it to a central server. The main functionalities of

CLM include (1) storing log data from multiple sources in a central location, (2) enforcing

retention policies to gain a specific log data for a specific time period, (3) easily searching

inside the logs for important information, (4) generate alerts based on the predefined security

polices, and (5) setting up security alerts and granting login access to particular uses without

granting server root access. Examples of open-source centralized logging solutions are

discussed as follows.

1.1 Fluentd

Fluentd [7] is one of the most popular and widely deployed open-source tool that

collects and forwards logs to different destinations. It is a cross-platform software project

originally developed at Treasure Data. The program was designed to solve the challenge of

big data log collection. It’s licensed under Apache License v2.0 and written in Ruby

programming language. Fluentd has been designed as a unified logging layer that supports

various log sources and formats (such as log files, syslog, network protocol, and TCP sockets),

and then converts these logs into structured data before sending them to their intended

destinations including databases, object storage, message queues, and other log receivers.

Figure 2: Fluentd architecture

 5

Figure 2 shows the design architecture of Fluentd. It has a flexible plugin system that provides

a wide variety of plugins to connect many different data sources and destinations. Typically,

the plugins can be classified into six categories:

• Input: which is used to gather log data from multiple sources.

• Parser: allows users to parse source’s custom data format which Fluentd can

then understand.

• Filter: allows Fluentd to modify and adjust incoming logs before forwarding it

to output plugins. It can extract or discard data based on various conditions,

such as filtering logs that contain specific keywords/patterns.

• Output: uses to transmit log data to various systems (e.g., databases, search

engines, cloud services, and log management tools).

• Buffer: used by output plugins to temporarily store the incoming log data

before flushing them to the storage system. The size and duration of the buffer

can be configured according to the specific use case.

• Formatter: used by output plugin to modify output formats according to user

needs.

1.2 Fluent Bit

 Fluent Bit [8] was developed in 2014 by the Fluentd team at Treasure Data to address

the need for a lightweight log data processing solution in resource-constrained environments,

such as Embedded Linux systems and gateways. It was designed as an integral part of the

Fluentd Ecosystem and serves as an open-source program for efficient log data collection and

processing in diverse environments that may have limitations, such as resource-constrained

setups or complex cloud infrastructures. The core principle of Fluent Bit is to receive data

from various sources, perform transformations and processing on the collected data, and then

forward it to multiple destinations. It excels at achieving high performance while consuming

minimal resources, making it well-suited for systems with resource limitations or small

footprints. Moreover, it offers flexibility for customization and configuration to meet the

specific requirements of users. It supports multiple configurations and data export formats,

including sending data to multiple servers concurrently, writing data to files, or forwarding data

to other systems like Apache Kafka, Elasticsearch, Amazon S3, Google Cloud Storage, etc.

 6

In addition, Fluentd and Fluent Bit are two closely related projects. Both projects are

licensed under the Apache License v2 . 0 and are hosted by the Cloud Native Computing

Foundation (CNCF). They are vendor neutral and community-driven projects. Fluent Bit is

designed and built on top of the architecture and general design of Fluentd, incorporating its

best ideas. The choice between the two depends on the specific needs of the end-user. Table

1 provides a comparison of different aspects of the projects. Both Fluentd and Fluent Bit can

work as Aggregators or Forwarders, they both can complement each other or use them as

standalone solutions. In the recent years, Cloud Providers switched from Fluentd to Fluent

Bit for performance and compatibility reasons. Fluent Bit is now considered the next

generation solution.

Table 1: Comparison of Fluentd and Fluent Bit.

Aspect Fluentd Fluent Bit
Scope Containers / Servers Embedded Linux / Containers / Servers

Programming Language C & Ruby C

Memory > 60MB ~1MB

Performance Moderate High

Dependencies Relies on certain Gems for some features
Does not depend on external

dependencies except for special plugins

Plugins Over 1000 external plugins available Over 100 internal plugins available

License Apache License v2.0 Apache License v2.0

Resource Usage

Fluentd is larger and resource-intensive

due to its extensive features and

capabilities

Fluent Bit is smaller and uses fewer

resources compared to Fluentd, suitable

for resource-constrained systems

Customization

Fluentd offers a flexible plugin system to

connect with various data sources and

destinations

Fluent Bit also provides customization

through plugins but with fewer plugin

options compared to Fluentd

Recommended Use
Suitable for collecting and forwarding

large-scale log data

Ideal for real-time data ingestion and

system monitoring in resource-limited

scenarios

1.3 Graylog

Graylog [9] is an open-source log management solution for capturing, managing, storing

and analyzing logs. It can filter, sort, analyze, and display data in various formats including

structured and unstructured data. It can collect and manage logs from various sources. Also,

it has the ability to collect alerts and notifications, such as email, Slack, and PagerDuty

 7

notifications. In addition, Graylog provides REST APIs that allows developers to easily integrate

it into their platforms and applications by sending requests and receiving responses via

HTTP/HTTPS. According to the Graylog architecture (Figure 3), it has been developed based

on a master-slave synchronization model comprising five main components.

• Collector: receives log data from various sources such as syslog, GELF (Graylog

Extended Log Format), or Beats, and sends this data to the Graylog server.

• Graylog server: it is responsible for managing log and event data, including

creating notifications and filtering out irrelevant information, managing users,

roles, and permissions to control access to the system's logs and events,

analyzing and visualizing log data stored in the system, and providing features

such as searching log data based on conditions, filtering log data by event type,

and displaying data through graphs and tables.

• Elasticsearch: it is a NoSQL database system used for storing and searching data

especially for logs and events, and capable of storing a large amount of log

data.

• MongoDB: it is a NoSQL database system used for storing configuration,

metadata, and settings, including configuration, user, role, and permission data.

• Graylog web interface: the component used by users to manage log and event

data in the system.

Figure 3: Graylog architecture

 8

1.4 Apache Kafka

Apache Kafka [10-12] is an open-source event streaming platform which provides the

ability to durably write and store streams of event and process them in real-time or

retrospectively. It is a distributed messaging system of servers and clients that enables the

processing of real-time streaming data. This data is continuously generated and transmitted,

allowing for asynchronous communication between systems and eliminating the need for

processes to wait for simultaneous data transfer. Apache Kafka can function as a message

broker or message bus, facilitating direct communication between different applications

without requiring an Application Programming Interface (API). It has been built based on three

key capabilities: (1) enabling the developers to write and read streams of events including

continuous import/export of their data from other systems, (2) storing streams of events

durably and reliably for a certain time period as needed, and (3) streams of events can be

processed in real-time or retrospectively. As shown in Figure 4, Apache Kafka has been

designed based on a published-subscriber messaging model. It consists of servers and clients

that facilitates communication between applications and services via a high performance TCP

network protocol. Users write programs to send data (producers) and receive data

(consumers), and data is stored in a topic format. Each topic is divided into partitions, with the

number of partitions predetermined at the beginning and not recommended to be changed

during operation. Apache Kafka comprises several components, including Producer, Consumer,

Topic, Broker, and ZooKeeper.

Figure 4: Kafka architecture

 9

• Producer: It is responsible for creating and sending data to a Kafka cluster. It stores

data and sends it to Kafka brokers. It has the ability to partition data into different

partitions of a Topic based on specific criteria. This allows for better organization and

more efficient distribution of data across the Kafka cluster.

• Broker: It is responsible for handling the transmission of data between Producers and

Consumers, storing incoming data in Topics, and managing the storage of data within

each Topic. It also controls access to data for various Consumers. In a Kafka cluster,

there are multiple Brokers operating as a distributed system. Each Broker in a Kafka

cluster is responsible for managing one or more partitions of a Topic. Brokers replicate

data across the cluster to ensure fault tolerance and high availability. If a Broker fails,

other Brokers can take over its responsibilities to ensure that data is still available for

Consumers. In addition, data stored in each partition is ordered continuously, meaning

that older data is located at the front and newer data is located at the back.

Consumers read data from the front to the back (according to the offset value in each

partition). It is important to note that there are various ways for consumers to read

data. In each partition, data is always ordered, as shown in Figure 5.

• Topics: Topics in Kafka are similar to categories or channels in other messaging systems.

Each Topic can have one or more partitions, and each partition can have multiple

replicas for fault tolerance. Topics can be created, deleted, and configured using

Kafka's command-line tools or a variety of Kafka client libraries.

• Consumer: It is responsible for reading and processing data from brokers. Consumers

can select the desired topic to read data from, and Kafka brokers will send messages

to consumers upon request. Consumers can track the status of data reading and

configure the partition offset. In addition to reading data from a specific topic,

consumers can also join a consumer group to distribute the load of processing data

across multiple instances, which helps reduce the processing workload and increase

the efficiency of using the Kafka cluster. Each partition in a topic can only be consumed

by a single consumer group at a time, but multiple consumer groups can consume

data from the same topic simultaneously.

 10

• ZooKeeper: It is a distributed coordination service that helps manage and monitor

Kafka brokers and Consumers. It maintains information about the status and location

of each Broker, as well as metadata about Topics and partitions. Kafka uses ZooKeeper

to elect a leader for each partition and to coordinate Consumer Groups.

1.5 Rsyslog

Rsyslog [13-15] is Rsyslog is an open-source software utility used on Linux and UNIX-

based operating systems for forwarding log messages and event data in an IP network. It has

the ability to collect and send events to multiple destinations including various files and

database systems such as MySQL, PostgreSQL, and MongoDB. It has been implemented using

the basic syslog protocol, while extending the capabilities with flexible configuration options,

rich filtering capabilities, content-based filtering, queued operations to handle offline outputs,

Figure 5: Kafka partitions

Figure 6: Rsyslog architecture

 11

and supporting for different module outputs. Figure 6 shows the architectural framework of

Rsyslog which consists of the following modules.

• Input modules: There are used for receiving data from various sources such as syslog,

TCP, UDP, file, MySQL, etc.

• Message parser: It is responsible for converting data into a format that Rsyslog can

understand. In particular, Rsyslog can handle only data in plain text format. If the data

has other format files (e.g., JSON, XML, and binary format), a message parser is required

to convert this data into a format that can be understood and processed by the

Rsyslog.

• Ruleset engine: It is the component that processes data and perform actions on that

data according to the predefined rules such as filtering, outputting to files, or sending

to other sources.

• Output module: It is the component that sends data to various destinations (e.g.,

syslog, TCP, UDP, file, MySQL, Elasticsearch). Once the data is processed by the Ruleset

engine, it is passed to the output module for forwarding the data to the specified

destination.

• Action queue: It is used to store data before sending out to the output destinations.

In other words, there can be multiple Action queues operating simultaneously.

• RainerScript: It is a scripting language specially designed for processing network events

and configuring event processors. It is the prime configuration language used to define

data processing and rules for Rsyslog. It allows users to specify various actions to be

taken on log messages, such as filtering, transforming, and forwarding.

In addition, Rsyslog has plugins as components that help to manage log data. Plugins

are additional modules called by Rsyslog to detect and manage log data based on the nature

of each plugin's work. For example, the imfile plugin connects to real-time log files, the imtcp

plugin receives log data via the TCP protocol, and the omelasticsearch plugin sends log data

to Elasticsearch, as shown in Figure 7. The plugins shown on the left and right hand sides of

the Figure are the input and output plugins, respectively. The input plugin is responsible for

receiving log data from various sources such as files, Syslog, UDP/TCP, or other collections.

Meanwhile, the output plugin is responsible for sending log data to various destinations such

as files, Syslog, MySQL, Elasticsearch, AWS CloudWatch, or other collections. Each plugin can

 12

specify the format and storage of log data, and the selection of each plugin depends on the

usage and requirements. Also, Users can develop their own plugins according to their needs.

1.6 Elastic Stack (ELK Stack)

 Elastic Stack [16-19] is a group of open-source tools from Elastic designed to helps

users for managing and analyzing data in various formats. It can handle both structured and

unstructured data and is designed to support data management and analysis in different

situations such as security monitoring, web analytics, and IoT data management and analysis.

It can be deployed on premises or made available as Software as a Service (SaaS). In general,

Elastic Stack was formerly known as the ELK Stack (Elasticsearch, Logstash, and Kibana), but

Figure 7: The different types of Rsyslog plugins

Figure 8: The overview architecture of Elastic Stack

Figure 9: Elastic Stack flow diagram

 13

has been rebranded as the Elastic Stack by subsequently added Beats to the stack. Figure 8

shows the core products of Elastic Stack along with their functionalities.

• Beats: There are data shippers that are installed on server as agents who used to send

different types of operational data to Elasticsearch either directly or through Logstash,

where the data might be enhanced or archived.

• Logstash: It is a data collection engine that unifies data from multiple sources, offering

database normalization and distribution of data.

• Elasticsearch: It is a RESTful distributed analytics and search engine for all types of data

including textual, numerical, geospatial, structured and unstructured.

• Kibana: It is an open-source fronted application that sits on top of the Elastic Stack. It

provides search and performs data visualization for data indexed in Elasticsearch. The

software makes complex data streams more easily and quickly understandable

through graphic representation. Also, it acts as the user interface for monitoring,

managing, and securing an Elastic Stack cluster, as well as providing a centralized hub

for built-in solution developed on the Elastic Stack.

For concreteness, Figure 9 illustrates the connection between Beats, which are agent-

based Log collectors installed directly on servers. It communicates with Logstash using the

HTTP protocol in order to send Log data to the Logstash server. In other words, Logstash acts

as a middleware for data communication between Elasticsearch and Kibana, allowing data

accessed via Elasticsearch to be easily displayed in various formats through Kibana. Meanwhile,

Kibana is capable of creating dashboards, visualizations, and alerts.

1.6.1 Beats

The Elastic Stack expands the capabilities of Elasticsearch by adding extremely useful

tool to work alongside Logstash or Elasticsearch. One of the most useful tools is the Beats

ecosystem [20-22]. Specifically, it is a collection of lightweight, single-purpose data shipping

agents used to send data from hundreds or thousands of machines and systems to Logstash

or Elasticsearch. Beats are great for gathering data as they can sit on any servers/containers,

or deploy as functions then centralize data in Elasticsearch. Nowadays, there are several types

of Beats available as shown in Figure 10. For example, Filebeat, Metricbeat, Packetbeat,

Winlogbeat, and Auditbeat. Each type of Beat works in a similar way. That says an agent is

 14

installed and used on each machine or device to monitor and collect data from various

sources such as server logs or IoT devices, and then parses the data to Elasticsearch or

Logstash in real-time. The different types of Beats can be explained as follows:

• Filebeat: It is used to collect and harvest logs and data from various sources such as

log files, system logs, and audit logs.

• Metricbeat: It is used to collect metrics such as CPU usage, memory usage, and network

traffic.

• Packetbeat: This beat used to analyze and collect data from network traffic such as

HTTP, DNS, MySQL, and other protocols.

• Heartbeat: It is used to check the status and health of various systems such as web

servers, database servers, etc., by sending HTTP, TCP, ICMP, or UDP requests to servers

and devices and verifying their response. Heartbeat can be used to determine if a

network or application is functioning properly and can notify users in case of any issues.

• Winlogbeat: This beat used to collect Windows event logs.

• Auditbeat: It is used to collect audit logs from various sources such as the Linux audit

framework, Kubernetes audit log, etc.

Figure 10: Types of Beats

 15

1.6.2 Logstash

Logstash [21,23] is an open-source server-side data processing pipeline which has the

capability of collecting data from a variety of sources, parsing, filtering, and transforming the

data before storing it in a database system, Syslog server, or other systems in various formats.

It takes care of data collection and processing. That says, it is used to collect, parse, filter, and

transform the system log data. It works as a pipeline where the incoming log data from servers

is being centrally taken and processed by Logstash as input, and ships the executed data to

various supported destinations such as Elasticsearch as output. With pre-built filters and

support for over 200 plugins, Logstash supports a variety of inputs by allowing users to easily

ingest unstructured data regardless of the data source or format, while converging its into a

common format and a continuous streaming fashion for further enhancing powerful analysis

and business value. For example, system logs, website logs, and application server logs. In

particular, the design principle of Logstash involves three stages (as shown in Figure 11).

• Inputs: This is the first stage in the Logstash pipeline in which data is ingested into

Logstash from a source. It can manage various inputs such as plain file, apache logs,

events log, system log, nginx log, etc. To achieve the goal, Logstash uses input plugins

to receive, collect, and place the data on an internal queue.

• Filters: This is the intermediate stage in the pipeline of Logstash which uses filter

plugins to parse and manipulate the input events with regards to the required criteria.

Logstash allows for combining filters with certain conditions to perform an action on

the input event in order to meet a particular criteria. Some useful filters include ‘age’

which is used to calculate the age of an event, ‘clone’ for duplicating events, ‘drop’

for dropping all events.

• Outputs: This is the final stage of the Logstash pipeline. Once the data has been

ingested, the processing threads send the data to appropriate output plugins, which

Figure 11: Logstash architecture

 16

are responsible for formatting and sending data onwards. Some commonly used

outputs include Elasticsearch, HTTP, email, S3 file, Syslog, PagerDuty alert, and so on.

1.6.3 Elasticsearch

 Elasticsearch [16-19,22] is a distributed, open-source search, and analytics engine built

on Apache Lucene and developed in Java. It becomes the most popular search engine and is

commonly used for log analytics, full-text search, security intelligences, business analytics,

and operational intelligence use cases. In particular, Elasticsearch allows for users to store,

search, and analyze huge volumes of data, and then provide the answers in real-time. It relies

on a NoSQL database that utilizes search technology to facilitate data retrieval and searching.

It is capable of managing both structured and unstructured data, and can divide data into

nodes to improve performance and accessibility. Once the raw data is parsed, normalized,

and indexed by the Elasticsearch, users can run complex queries against their data and use

aggregations to retrieve complex summaries of their data. As a result, by utilizing Elasticsearch

as a database, users are able to efficiently search and manage large quantities of data with

ease. The working principle of Elasticsearch introduces several features for usage. For example,

index creation, searching, mapping for managing data relationships, time-based data

management, and real-time management. When considering to the core concept of

Elasticsearch, it has been designed and developed which consists of the following

components (as shown in Figure 12).

Figure 12: Overview of Elastic architecture

 17

• Node: a tool used for storing data, searching data, and performing other operations in

Elasticsearch. It serves as a server or a networked machine, and each node can have

multiple machines.

• Cluster: a set of Elasticsearch nodes that are grouped together to increase performance

and stability. Each cluster has its own unique name and can have a large number of

nodes in the same cluster.

• Index: a set of data collected and stored, which can be searched by full-text search

and is the basic unit of data storage in Elasticsearch as shown in Figure 13.

• Document: data that is stored within an index, which can be searched by full-text

search and is formatted as JSON, allowing for adding, deleting, and modifying.

• Field: a component of a document that defines the structure of the data in the

document, with different types of fields available such as text, keyword, date, boolean,

etc.

• Shards: Shards are sub-units of data that are used to improve data storage and search

efficiency in Elasticsearch. Each shard is actually a self-contained index. By distributing

the documents in an index across multiple shards, and distributing these shards across

multiple nodes, thus this can ensure redundancy which both protects against hardware

failures and increases query capacity. In particular, shards can be classified into two

types: primaries and replicas.

o Primary shard: It is the main shard that stores data and acts as the central point

for searching data in Elasticsearch for each index. Each index has only one

Figure 13: Elasticsearch subdivides the index into multiple pieces, called Shard.

 18

primary shard, and when new data is added to the index, it is written to the

primary shard first. Then Elasticsearch divides the data into sub-units and

distributes it to replica shards.

o Replica shard: It is a copy of the primary shard that is created to increase the

stability of data storage and searching in Elasticsearch. Replica shards are stored

in different nodes that are members of the cluster, to distribute data storage

and searching system

1.6.4 Kibana

Kibana [24] is a data visualization and exploration tool used for log and time-series

analytics, application monitoring, and operational intelligence use cases. It offers a powerful

tool and easy-to-use features for allowing users to visualize and analyze data stored in

Elasticsearch. Its key features include dashboards and visualizations, which provide various

options for presenting data such as histograms, line graphs, bar charts, pie charts, heat maps,

and built-in geospatial support. It also acts as the user interface for monitoring, managing, and

securing an Elastic Stack cluster. While, it provides tight integration with Elasticsearch for

visualizing the indexed data. Additionally, Kibana offers alerting capabilities that allow users

to set up customized alerts when certain conditions are met.

Figure 14: Example of Kibana dashboard

 19

1.7 Functionality analysis

Table 2 and Table 3 describe the differences characteristics between the open-source

tools discussed in the previous section.

Tables 2: Functionality analysis in terms of scalability, flexibility, language/run-time

machine and caching

Tools Description Scalability Flexibility
Language/Run-

time Machine
Caching

Fluentd

Data collection and streaming

platform for unified data

collection

Can scale

horizontally to

handle large-scale

deployments

Flexible and

extensible architecture

with a wide range of

plugins

Ruby, C Supports

Fluent Bit

Lightweight data collector

and processor for cloud-

native environments

Supports

horizontal scaling

and distributed

deployments

Supports various data

sources and

destinations with

plugin ecosystem

C Supports

Graylog

A centralized log

management platform that

allows the collection,

indexing, and analysis of log

data. It has a built-in web

interface for searching and

visualizing log data.

Can handle

massive amounts

of log data.

Provides advanced log

analysis and alerting

features.

Java
Does not

support

Apache

Kafka

A publish-subscribe messaging

system that allows for high-

throughput and low-latency

data streaming. It can be used

for real-time data streaming

and event-driven architecture.

Highly scalable

and can handle

high volumes of

log data.

Supports real-time

processing of log data.

Scala, Java
Does not

support

Rsyslog

A powerful and flexible log

management system. It

supports input from various

sources, output to various

targets, and advanced filtering

capabilities.

Capable of

handling large

amounts of log

data.

Offers a broad range of

log processing

capabilities.
C Supports

Elasticsearch

A search and analytics engine.

It supports indexing and

searching of log data for fast

and efficient querying and

analysis.

Highly scalable

and can handle

large amounts of

log data.

Offers advanced

search and analysis

features. Java
Does not

support

 20

Logstash

A log pipeline tool that helps

to collect, parse, and store

logs. It has a wide range of

plugins for input and output

sources

Capable of

handling large

amounts of log

data.

Offers a wider range of

log processing

capabilities. Ruby,Java Supports

Tables 3: Functionality analysis in terms of data collection, data parsing, data transformation,

data output and user-friendly web interface

Tools Data Collection Data Parsing
Data

Transformation
Data Output

User-friendly

Web Interface

Fluentd

Supports various

input sources

such as HTTP,

Unix sockets, TCP,

and more

Supports data

parsing using

regex, JSON, and

more

Supports data

transformation

using filters such

as grep and awk

Supports various output

destinations such as file,

HTTP, and more

limited web interface

for monitoring and

management

Fluent Bit

Supports various

data sources such

as logs, metrics,

and events

Supports data

parsing using

plugins and

custom

configurations

Supports data

transformation

using filters and

plugins

Supports various data

destinations such as

files, databases, and

messaging systems

Does not have a built-in

user-friendly web

interface

Graylog

Supports various

input sources

such as Syslog,

GELF, and more

Supports data

parsing using

built-in extractors

or custom

extractors

Supports data

transformation

using pipeline

rules

Elasticsearch, Graylog

Extended Log Format

(GELF), and more

user-friendly web

interface for searching,

visualizing, and

managing log data

Apache

Kafka

Supports publish-

subscribe

messaging

Does not have

built-in parsing

capabilities, but

data can be

parsed before

being sent to

Apache Kafka

Does not have

built-in

transformation

capabilities, but

data can be

transformed

before being sent

to Apache Kafka

Supports various output

destinations such as

Elasticsearch, Graylog

Extended Log Format

(GELF), and more

Does not have a built-in

web interface

Rsyslog

Supports input

from various

sources including

syslog, files, and

more

Supports data

parsing using

regular

expressions

Supports data

transformation

using rainers

Supports various output

destinations such as file,

syslog, and more

limited web interface

for monitoring and

management

Elasticsea

rch

Supports indexing

and searching of

log data

Does not have

built-in parsing

capabilities, but

Supports data

transformation

Supports indexing and

searching of log data

user-friendly web

interface for searching

and visualizing log data

 21

2. Threat intelligence platform

Threat intelligence is a critical element of any Security Operations Center (SOC) as it

provides vital information about potential threats and vulnerabilities. The core concept of

threat intelligence platform aims to automate the collection, aggregation, and reconciliation

of threat data from multiple sources in real-time to support defensive actions. The ultimate

goal is to help security teams to identify the threats that relevant to their organizations by

providing them with useful information on known malwares and threats, while powering

efficient and accurate threat identification, investigation and response. Also, it allows security

teams to easily share threat intelligence data with other stakeholders and security systems. In

other words, the threat intelligence is said to be a key ingredient for cybersecurity defenders

that enable decision making for threat management and mitigation. It makes possible for

organizations to gain an advantage over the adversary by detecting the presence of threat

actors, blocking and tackling their attacks, or degrading their infrastructure [25]. Using the threat

intelligence solution, organizations can identify the threat sources that are relevant to their

environments, potentially reducing the cost associated with unnecessary commercial threat

feeds [26]. In this section, we aim to study in more details about a set of open source platforms

for threat intelligence that have been widely used nowadays. Specifically, threat intelligence

can be divided into two main parts: (1) Threat Intelligence Management and (2) Network

Intrusion Detection and Prevention System (NIDPS).

2.1 Threat Intelligence Management

 Threat Intelligence Management enables organizations to better understand the global

threat landscape, anticipate attacker’s next moves, and take prompt action to stop attacks.

It is the collection, normalization, enrichment and actioning of data about potential attackers

data can be

parsed before

being indexed in

Elasticsearch

during indexing in

Elasticsearch

Logstash

Supports various

input sources

such as file, HTTP,

and syslog

Supports data

parsing using

filters such as grok

and date

Supports data

transformation

using filters such

as grok and

mutate

Supports various output

destinations such as file,

HTTP, and more

limited web interface

for monitoring and

management

 22

and their intentions. Also, it provides SOC analysts actionable intelligence with associated

normalized risk scores and the necessary context from intelligence sources that are required

in order to detect, prioritize and investigate security event. Examples of open-source tools are

Malware Information Sharing Platform (MISP), Open Cyber Threat Intelligence Platform

(OpenCTI), Collaborative Research Into Threats (CRITs), and Collective Intelligence Framework

(CIF).

2.1.1 Malware Information Sharing Platform (MISP)

MISP (Malware Information Sharing Platform) [27-29] is an open-source platform for

sharing, storing and analyzing threat intelligence data. It was created by the non-profit

organization Computer Incident Response Center Luxembourg (CIRCL) and is widely used by

threat intelligence analysts, incident responders, and security researchers. It provides a

standardized format for sharing threat intelligence information, which enables organizations

to exchange information about indicators of compromise (IOCs), malware samples, and other

threat data. One of the key features of MISP is the ability to facilitate collaborative threat

intelligence sharing among organizations, while providing a variety of mechanisms for securely

sharing threat intelligence data between different organizations, including a distributed

architecture, role-based access control, and the ability to selectively share data with specific

organizations. In addition, MISP can support a wide range of data types, including network

traffic captures, malware samples, and vulnerability information. It also provides a range of

tools for analyzing and visualizing threat intelligence data, including heat maps, timelines, and

graphs. The platform is highly customizable and can be configured to meet the specific needs

of different organizations.

2.1.1.1 Data Model

In particular, MISP is not only a software but also a series of data models created by

the MISP community. It includes a simple and practical information sharing format expressed

in JSON that can be used with MISP software or by another other software. The MISP data

model can be divided into two layers: data layer, and context layer, as shown in Figure 15.

 23

• Data layer: which stores deep-level data used to exchange information related to

cybersecurity threats and attacks among various organizations and users. According to

this layer, there are four components involved.

o Event: This component stores information on events or activities related to

various risks or threats. For example, deep-level data that describes these

events or activities. It consists of attributes and objects.

o Attribute: This component stores data related to events or activities, with a

key-value pair structure where the key is the name of the attribute and the

value is the data for that attribute. MISP attributes can have various types, such

as IP addresses, domain names, malware samples, and more.

o Object: This component stores data related to events or activities that are more

complex and consist of multiple related attributes. MISP objects are used when

displaying data that is more complex than just attributes, such as data related

to attacked applications.

o Event reports: This component stores additional information related to events

and various risks.

• Context layer: It includes various mechanisms for organizing and categorizing data,

including free tags, galaxies, and taxonomies.

o Free tags: These are the simplest form of contextualization, where a label or

text can be set without restriction. While, they are flexible that can make

automation and understanding difficult because they lack a standardized

vocabulary.

Figure 15: Type of Data model

 24

o Taxonomies: They are a more structured way of categorizing data, which

provide simple labels that are standardized on a common set of vocabularies.

Taxonomies provide an efficient classification globally understood by the

community and can ease consumption and automation.

o Galaxies: They are normalized classifications boosted by metadata, enable the

description of complex high-level information. They are used internally in MISP

to represent the MITRE ATT&CK (MITRE Adversarial Tactics, Techniques, and

Common Knowledge) Framework, which is a globally recognized knowledge

base of adversary tactics and techniques.

2.1.1.2 Sharing models

MISP has a "Sharing Models" framework for data sharing, which includes the different

levels of data sharing, as follows:

• Organization Only: which limited to the organization that can access the data.

• Community Only: which limited to the community within MISP that can access the

data.

• Connected Communities: It allows members of connected communities to share

the data.

• All: It allows everyone in MISP to access the data.

In each level of data sharing, access privileges can be specified, such as allowing access

only to authorized users in certain groups or sharing data publicly, which can be accessed

without restrictions. In addition, automatic data sharing can also be set up using rule-based

sharing, which automatically checks and shares data based on conditions specified in the MISP

system.

2.1.1.3 Correlation

 Correlation in MISP refers to the process of linking together events based on their

attributes. Whenever an attribute is created or modified in MISP, links are automatically

created to allow interconnection between events based on their attributes. The correlation

engine in MISP is the system used to create these correlations between attribute’s values, (as

 25

show in Figure 16). In addition, it is important to correctly cluster data in MISP to ensure that

correlations are accurate and meaningful. This can be done by using extended events if

applicable, and splitting data per incident or based on time. By doing so, the correlations

between attributes are more likely to be accurate and useful. Also, when configuring non-

MISP feeds, it is important to be careful as they may not be designed to work with MISP's

correlation engine. It is recommended to thoroughly test and evaluate any non-MISP feeds

before integrating them into your MISP instance to ensure that they work properly and do not

cause any issues with the correlation engine.

2.1.1.4 Data visualization

The capabilities of data visualization in MISP, are one of its key features that provide

users with a variety of powerful tools to analyze and understand the data they shared. It

includes several tools for data visualizations (as shown in Figure 17).

• Graph visualization: which shows the relationships between various entities in the

system, such as IP addresses, domains, and malware.

• Tree visualization: it represents the hierarchical relationship between the entities.

• Heatmap visualization: it represents the distribution of a particular attribute across

a dataset using colors.

Figure 16: Using MISP to create correlations

 26

• Calendar visualization: it represents events over a calendar year.

• Table visualization: which displays data in a tabular format, making it easy to

compare and analyze.

• Geomap visualization: which displays geospatial data in the form of maps.

• Event Graph: it represents events and their relationships in a graph format.

• Galaxy View: it provides an overview of different entities and their relationships in

a galaxy format.

• Timeline: which shows the events in chronological order over time.

2.1.2 Open Cyber Threat Intelligence Platform (OpenCTI)

OpenCTI [30-31] is a platform for processing and sharing threat intelligence knowledge.

It has been developed by the French National Cybersecurity Agency (ANSSI) along with the

Computer Emergency Response Team of the European Union (CERT-EU) [32]. The main

purpose of the OpenCTI platform is to provide a powerful knowledge management database

with an enforced schema especially tailored for cyber threat intelligence and cyber operations.

Figure 17: Data virtualization capabilities provided by MISP

 27

Nowadays, the platform has been fully released in open source and made available to the

entire cyber threat intelligence community, by allowing the actors to structure, store, organize,

visualize and share their knowledge. In addition, OpenCTI is considered as a comprehensive

tool allowing users to use a variety of knowledge schemas in structuring data. All data is

structured using the MITRE ATT&CK framework [33] with reference to the STIX2 standards [34].

The data can later be exported in the form of STIX2 bundles, CSV files, and other supported

formats. It performs its basic operations by finding the links that exist between the available

information. Therefore, it can effectively trace the root source of the given information. Also,

it has been designed as a modern web application including a GraphQL API [35] and an UX

oriented frontend, and can be integrated with other tools and applications such as TheHive

[36], MISP [37], MITRE ATT&CK [33], etc. In other words, OpenCTI has the ability to form new

relations on specific data types by inferring to the already existing information. It relies on a

number of databases to perform its functions and all these are connected by GraphQL API

which allows the brokers to interact with the available databases. Through this platform cyber

specialists have been able to improve the tactics deployed when dealing with cyber security

threats. With the available information in its archives, cyber security experts can now

effectively know how to handle cyber-related security threats. This has made the tool very

useful in boosting the cyber security of various organizations. To summarize, the key features

of OpenCTI are discussed as follows.

• Data connection and control: OpenCTI enables users to connect and control

various data formats from different sources (e.g., STIX 2, MAEC, MISP, and other

CTIs) in order to merge data and build a database of the OpenCTI platform.

• Analysis and alerting: It allows users to automatically analyze data movements and

create alerts for users when significant changes occur.

• Report generation and visualization: It allows users to create reports and visualize

data relevant to assist in decision-making and future planning.

• Integrating with other tools: OpenCTI provides users with the ability to work with

other tools. For example, contacting other tools to extract additional data or

passing data to other tools for collaborative use, such as MISP and STIX-Shifter.

 28

Figure 18 presents the architecture of OpenCTI [38] that consists of several main

components. Initially, the React frontend uses RelayJS to communicate with an API that uses

the GraphQL query language and connects to the Elasticsearch database, which serves as the

primary database for storing all system data. There is also an events stream management

system for recording various events that occur in the system, as well as a real-time events

system that uses Redis to send data in real-time. Data storage in the system is handled by

MINIO, an open source storage management program that can connect to multiple

applications. In addition to these components, there are other components such as the API

registration, which is a Python Connector written by users to connect their own systems to

OpenCTI efficiently. Workers are standalone Python processes used for asynchronous write

queries that have high speed and can call APIs for efficient data insertion or export. Third-

party Connector pieces of software can also connect to external systems, such as push data

or listen events through the messaging system RabbitMQ, which is used to manage background

jobs such as importing, exporting, and others.

Figure 18: The overview of OpenCTI architecture

 29

2.1.2.1 Data Model

OpenCTI utilizes a graph database as its underlying data model, which is a database

model that uses the structure of a graph to store and represent data. The graph is composed

of two following components

• Nodes: which represent the various entities or components in the OpenCTI system.

Each node consists of properties and values that describe the characteristics of that

entity. For example, a network node may have properties related to its IP address and

connected networks, while a malware node may have the properties related to its

type and behavior.

• Edges: which represent the relationships between nodes. Each edge connects two

nodes and has types and properties that describe the nature of the relationship

between these nodes. For example, an edge connects a malware node and a network

node may represent the connection between the malware and the network that it

targeted.

To enable a unified approach for using a graph database for the description of different

kind of threats, the Structured Threat Information eXpression (STIX) database schema was

developed [34]. It is a language and serialization format used to exchange cyber threat

intelligence (CTI). STIX enables organizations to share CTI with others in a consistent and

machine readable manner, allowing security communities to better understand what

computer-based attacks they are most likely to see and to anticipate and/or respond to those

attacks faster and more effectively. It is designed to improve many different capabilities, such

as collaborative threat analysis, automated threat exchange, automated detection and

response, etc. With STIX, all aspects of suspicious, compromise and attribution can be

Figure 19: A list of STIX objects

 30

represented clearly with objects and descriptive relationships. Specifically, the STIX objects

are designed to be interoperable across multiple platforms and capable of connecting to

various systems, allowing users to efficiently exchange risk information between systems and

organizations. Also, STIX Objects support customization and updating to adapt to evolving risk

situations. Figure 19 illustrated a list of STIX objects.

• STIX Core Objects: This is the design principle of STIX Objects. There are three

subcomponents involved.

o STIX Domain Objects (SDO): These are representatives of each organization or

sub-organization that are important for sharing risk information. Examples

include indicators, attack patterns, mampaigns, courses of action, intrusion sets,

malware, tools, and identities.

o STIX Cyber-observable Objects (SCO): These are data that can be used to

further detect and verify attacks. For example, files, registry keys, processes,

network traffic, email addresses, URLs, and user accounts.

o STIX Relationship Objects (SRO): These are connections between data from the

same organization or group, which provide meaning to the data and help users

to track and analyze risks effectively. Examples include related-to, targets,

indicates, uses, located-at, and part-of.

• STIX Meta Objects: These are STIX Objects used to provide additional information for

using STIX Core Objects.

o Language Content Objects: These used to specify the language of the data.

They can be used with each STIX Core Object to provide clarity and

understanding of the data.

o Marking Definition Objects: These are STIX Objects used to define markings in

STIX data, which help users to easily distinguish and process risk-related

information. Markings can specify confidentiality, integrity, and trustworthiness.

• STIX Bundle Object: It used to bundle multiple STIX objects together into a bundle.

In the latest version of STIX, STIX 2.x, the bundle object is used as a key data sharing

model that can be used to exchange risk information between organizations.

 31

2.1.2.2 Data visualization

Data visualization in OpenCTI [39] is a tool for displaying data that affects risk analysis

and security verification. It provides the ability to display data in graph format, which is a

crucial tool for creating different perspectives on data analysis and verification of entities

related to risk and security. Figure 20 exemplified data visualization in OpenCTI platform. The

key features of data visualization in OpenCTI are discussed as follows.

• Entity and relationship data display: This feature allows analysts to display entity data

and the relationships between variables that they want to verify easily. Users can

select the entities and relationships of interest in different views.

• Victimology data comparison and analysis: This feature allows users to compare

Victimology data from different attack sets. Users can easily analyze these data and

find relationships between them.

• Indicator linking with threat: This feature makes it easy for analysts to link indicators

with threats. Users can view related information such as source, maliciousness score,

and others.

• Analysis system using dynamic widgets: OpenCTI has an analysis system that uses

dynamic widgets to help users analyze data automatically and quickly.

• Display of related data in graph and bar chart format: This feature helps users

understand the patterns of linkages and relationships between things they want to

Figure 20: Data visualization in OpenCTI

 32

verify. For example, users can display a tree map that shows the size of data and

proportions.

2.1.3 Collaborative Research Into Threats (CRITs)

 CRITs [40-42], is an open-source malware and threat repository that leverages other

open-source software to create a unified tool for collecting, analyzing, and sharing information

about the cyber threats. It has been developed in 2010 with the purpose to give the security

community a flexible and open platform for analyzing and collaborating on threat data,

security events, and risks [43]. CRITs employs a hierarchy to structure cyber threat information,

thus enabling the analysts to perform complex queries and discover previously unknown

related content. The platform includes a flexible data model, event management system, and

various tools for data analysis and sharing. It uses a non-relational MongoDB database and can

be integrated with other services such as OpenDNS, ThreatExchange, and Yara. The platform

covers all stages of threat intelligence operations, including preparation, processing, analysis,

and dissemination. In addition, CRITs provides a web-based GUI and a command-line interface

via API, thus enabling users to access the platform via a web browser. Also, CRITs enables

analysts to receive, analyze, and share data from various sources, such as malware analysis

tools, network sensors, and risk-related information feeds. While, it provides a flexible data

model that can accommodate custom data types and features such as search, filtering, tagging,

and notifications. The platform has an event management system that covers all stages of

operations, allowing organizations to effectively track the lifecycle of events and follow

appropriate procedures. According to [43], CRITs has been designed based on the following

components.

• Web Application: The front-end interface of CRITs, which enables users and

administrators to access and manage data in the system using web technologies such

as HTML, CSS, JavaScript, as well as frameworks and libraries like Django, jQuery, and

Bootstrap.

• Database: CRITs uses a NoSQL-based database structure and utilizes MongoDB to store

information related to threats and attacks.

• Analysis engine: This component analyzes and manages threat-related data using a

variety of techniques, such as data extraction, risk assessment, technical analysis, and

personal analysis.

 33

• Collection server: It is responsible for collecting and storing the threat data from

different sources for analysis and management by various modules in CRITs.

• Authentication and authorization: It uses to verify and authorize user access to the

system for preventing against unauthorized access and actions.

• User interface: It displays system data and allows users to interact with the data in a

user-friendly and intuitive manner.

• Application Programming Interfaces (APIs): These components provide a way for CRITs

to connect with other systems (e.g., importing data into CRITs or exporting data from

CRITs to other systems), with the purpose to enhance the efficiency of threat and

attack management.

• Reports: It allows users to generate customized reports based on their specific needs

and requirements related to threat and attack management.

Overall, CRITs uses a collection server to store original or aggregated data from various

sources for later analysis and management, and leverages analysis engine to analyze and

manage risk and attack data, which can include Data Extraction, Risk Assessment, Technical

Analysis, and Personal Analysis. CRITs uses MongoDB to store data related to risk and attack,

with a NoSQL structure that is highly flexible for data storage. The platform also features a

data visualization component to allow users to quickly and efficiently view risk and attack

data within the system. Figure 21 exemplified an unpopulated CRITs dashboard and STIXv2 as

the main framework.

Figure 21: CRITs dashboard

 34

2.1.4 Collective Intelligence Framework (CIF)

CIF [44] is a cyber threat intelligence management system that manages information

related to threat intelligence. That says, it allows user to combine known malicious threat

information from many sources, and use this information for identification (incident response),

detection, and mitigation. Thus, the main objective of CIF is to consolidate information for

supporting threat identification, detection and mitigation. It collects data and provide a simple

lookup service spanning all the configured sources, as well as a way of constructing bigger lists

out of all available data (output feeds). The platform has been designed to support four stages

of Threat Intelligence Sharing (TIS) process, which includes preparation, collection, analysis,

and dissemination. Specifically, the main idea behind the CIF is to create a tool enabling easy

aggregation of data from many small data sources (input feeds) dispersed in the public

Internet. This includes text files published on Pastebin-like services, website rankings (Alexa

etc.), public botnet controller lists and others. CIF should not be treated as a central

intelligence database, but it acts as an intermediary block in a data collection system,

functionally similar to a funnel.

In [45], the authors pointed out that CIF is client/server system for sharing threat

intelligence data. It includes a server component (as shown in Figure 22) which is responsible

for collecting and storing the CTI data. Data can be IP addresses, ASN numbers, email

addresses, domain names and Uniform Resource Locators (URLs) and other attributes. These

data can be accessed via various client programs. The standard client is a Perl command line

utility. A browser plugin is also available. CIF data also includes information on the type of

Figure 22: CIF overview

 35

threat, severity of an attack and the confidence of the data. CIF provides the ability to control

access through the use of an API-Key and the ability to place restriction levels on the data.

Internally, CIF stores data using the IODEF format. It is also capable of exporting CTI for specific

security tools, and can output data as Snort rules or iptables rules as well as other formats.

Moreover, CIF can import and store data from various sources, ranging from private

information to public sources such as domain names, IP addresses, and URLs. This is done by

importing basic information into the system via YAML configuration that supports XML [46],

JSON [47], and CSV [48]. The platform uses an application called cif-smrt to download,

separate, and import data into the platform. Data collection is ongoing 24 hours a day and

stored in JSON format using Elasticsearch [17]. The platform also has basic functions for

automatic data collection, and has threat intelligence data aggregation functions that can

separate, standardize, and complement collected data. Nevertheless, CIF is a command-line

tool and does not have visualization capabilities. In other words, it can leverage Kibana for

graph generation [49-50]. In addition, the analysis process can work together in detail. The

distribution of threat intelligence can be activated by pushing and pulling data. It can be

pushed to other instances or integrated into existing security structures. Users can also retrieve

data by setting filters to share the threat intelligence by selecting groups. However, there is

no information on the type of filters available.

2.1.4.1 Architecture

According to [51], CIF architecture consists of the following main components.

• PostgreSQL database: CIF uses a PostgreSQL database to store and manage threat

intelligence data. The database schema is designed to be flexible, allowing CIF to

accommodate different types of data, such as IP addresses, domains, URLs, email

addresses, and file hashes.

• Apache2 server: CIF uses the Apache2 web server to host the CIF web interface and

API. Apache2 is a widely used open-source web server that provides a robust and

scalable platform for hosting web applications.

• PERL Code for handling HTTPS requests: CIF uses PERL code to handle HTTPS requests

between the CIF web interface/API and the database. In particular, HTTPS is used to

encrypt any of the underlying HTTP traffic on an HTTPs connection and secure

 36

communications between the CIF components, ensuring that sensitive threat

intelligence data is protected.

• PERL scripts for downloading data from configured sources: CIF uses PERL scripts to

collect and download threat intelligence data from configured sources, such as DNS

logs, firewalls, and other security tools. Examples of PERL scripts are as follows.

o cif-observable-retrieval.pl: This script is used to download observable threat

data from various sources. It connects to the PostgreSQL database and sends

the threat data to the database for storage.

o cif-observable-download.pl: Similar to the above description, this script is used

to download observable threat data from various sources. It uses HTTP or

HTTPS protocol to download data from the sources.

o cif-observable-cleanup.pl: This script is used to remove expired observable

threat data from the PostgreSQL database to prevent unnecessary data

inflation.

o cif-asn-retrieval.pl: It is used to download Autonomous System Number (ASN)

data of IP addresses from various sources such as ARIN, RIPE NCC, and APNIC

to aid in the analysis of threats associated with specific ASNs.

• CRON jobs for running scripts in a iimely manner: CIF uses CRON jobs to schedule the

execution of the data collection scripts at specific times. This ensures that the CIF

database is regularly updated with the latest threat intelligence data.

2.1.5 IntelOwl

 IntelOwl [52-53] was designed with the intent to help the community (i.e., researchers)

that can not afford commercial solution, in the generation of threat intelligence data, in a

simple, scalable, and reliable way. It is an Open Source INTelligence (OSINT) solution that

provides threat intelligence data about a specific file, IP addresses, or a domain from a single

API. It is designed to be scalable and fast, by integrating a number of analyzers available online

and a lot of cutting-edge malware analysis tools. The features of IntelOwl include threat

intelligence enrichment for malware and observables such as IP, domain, URL, and hash. The

application is built for scalability and speed in retrieving threat information. It includes

analyzers that can retrieve data from external sources like VirusTotal or AbuseIPDB, and then

 37

generate intel from internal analyzers such as Yara or Oletools. It also includes connectors

that can export data to external platforms. In particular, the main objective of Client Intel Owl

is to provide a single API interface for retrieving threat intelligence at scale. There are multiple

ways to interact with the Intel Owl APIs, including a built-in web interface with a dashboard

(as shown in Figure 23) , visualizations of analysis data, easy-to-use forms for requesting new

analysis, tags management, and other features. This web interface is built using Create React

App and based on certego-ui. Additionally, pyIntelOwl (CLI/SDK) can be used as a library for

your own Python projects or accessed directly via the command line interface.

 Additionally, IntelOwl has a feature for "Organizations and User" management, which

includes a new "Organization" section available on the GUI. This section replaces the previous

permission management via Django Admin and aims to provide an easier way to manage users

and visibility. It also supports the Traffic Light Protocol (TLP) to facilitate sharing of job/analysis

results in a standardized manner. The way Intel Owl facilitates threat information sharing using

TLP is that each connector has a maximum TLP value (customizable from the configuration

file) associated with it that gives you the control of what information is shared to the external

platforms.

2.1.5.1 Main features

The main features of IntelOwl are discussed as follows.

Figure 23: IntelOwn dashboard

 38

• Modern Django-Python application: IntelOwl provides an easy way to understand and

write code upon it. Django is a popular Python web framework used for developing

web applications. Thus, working with IntelOwl is made easier due to its use of Django,

especially when it comes to writing code for database connection, data management,

and creating web pages.

• It can get data from multiple sources with a single API request. This helps users avoid

writing code to call data from various sources separately, saving time and complexity

in coding. IntelOwl has functions that can connect and retrieve data from multiple

sources (e.g., VirusTotal, AbuseIPDB, PassiveTotal), by consolidating data from various

sources, it provides a unified source of information.

• There are more than 150 available analyzers available: This allows users to generate

or retrieve data about a suspicious file or observable (e.g., IP, domain).

• Built-in web interface, and written in React: IntelOwl provides features such as

dashboard, visualizations of analysis data, thus resulting in easy to use forms for

requesting new analysis and more.

• Official library and CLI client available on GitHub

• Built-in support for integration with other SIEM/SOAR projects using connectors,

specifically aimed at Threat Sharing Platforms.

• Easily integrable with other tools: Thanks to the REST API framework and to the

PyIntelOwl library, enabling IntelOwl to easily integrate with other tools.

• Easily and completely customizable, both the APIs and the analyzers.

• Compatibility with some of the AWS services.

• Fast and reliable deployment: It is possible to clone the project, set up the

configuration and run the IntelOwl via docker-compose.

2.1.5.2 Plugins

Plugins are the core modular components of IntelOwl that can be easily added,

changed and customized. Thus, it can been roughly be classified into three types.

 39

• Analyzers: Analyzers are the most important plugins in IntelOwl. They allow to

perform data extraction on the observables and/or files that users would like to

analyze.

• Connectors: Connectors are designed to run after every successful analysis which

makes them suitable for automated threat-sharing. They support integration with other

SIEM/SOAR projects, specifically aimed at threat sharing platforms. Currently, there are

three types of Connectors plugins available:

o MISP: which automatically creates an event on your MISP instance, while linking

the successful analysis on IntelOwl.

o OpenCTI: which automatically creates an observable and a linked report on

your OpenCTI instance, linking the successful analysis on IntelOwl.

o YETI: which refers to “Your Everyday Threat Intelligence”. It allows users to find

or create an observable on YETI, and link the successful analysis on IntelOwl.

• Playbooks: Playbooks are designed to be easy to share sequence of running

Analyzers/Connectors on a particular kind of observable. For example, If the users

want to avoid re-select/re-configure a particular combination of Analyzers and

Connectors together every time, then users should to create a playbook and use it

instead for further time saving.

2.1.6 Functionality analysis

Table 4 is a comparison of popular open-source threat intelligence platforms, which

allows users to easily compare the differences between programs. The table provides an

overview of characteristics in various areas such as import and export format support, data

validation and analysis, data visualization, data management and sharing, and integration with

other programs. This comparison helps users choose the most appropriate program for their

needs.

 40

Tables 4: Comparison of Open-Source threat intelligence management platforms.

Feature \

Program
MISP OpenCTI CIF CRITs intelOwl

Holistic Architecture

Use case

applicability

Sharing threat

intelligence, tracking

threat actors, incident

response

Threat intelligence

management, security

operations, threat

hunting

Sharing threat

intelligence, blocking

known malicious

activity

Threat intelligence

management, incident

response, forensics

Threat intelligence

management, incident

response, forensics

Adherence to

5W3H

method

High High Low High High

Intelligence Process

Import

Format

STIX, OpenIOC, CSV,

RPZ, MAEC

STIX, MAEC, CybOX,

OpenIOC, CSV, MISP

STIX, IP, DNS, URL,

YARA

STIX, CybOX, Email,

CSV, PCAP
MISP, VirusTotal, JSON

Export

Format

STIX, OpenIOC, CSV,

RPZ, MAEC

STIX, MAEC, CybOX,

OpenIOC, CSV

STIX, IP, DNS, URL,

YARA

STIX, CybOX, Email,

CSV, PCAP
JSON, CSV, HTML, PDF

Automatic

Gathering
Using MISP feeds

Using connectors with

sources or other

platforms

Automatic

synchronization with

different sources

Connecting with

various Threat

Intelligence feeds

Automatic

synchronization with

various sources

Graphic

Visualization

General and intuitive

dashboard and

relationship graphics

Diverse dashboards

and STIXv2 based

graphics

Command line

interface with possible

integration with

visualization tool

Web-based UI and

visualizations

Web-based UI and

visualizations

Correlation
Automatic for every

data in platform

Automatic for every

data in platform
Not addressed Not addressed

IOC correlation and

enrichment

Classification
Taxonomies and galaxy

clusters

Threat actors, malware

families and campaigns
No Customizable tags Customizable tags

Integration

Cuckoo Sandbox,

VirusTotal, IBM X-Force,

etc.

TheHive, MISP,

Maltego, etc.
Splunk, ELK, etc.

Maltego, TheHive,

MISP, etc.

TheHive, MISP, Splunk,

ElasticSearch, etc.

Sharing

Method

API, MISP galaxy, email,

web interface

Web interface, API,

email

Web interface, API,

email

Web interface, API,

email

Web interface, API,

email

Support of

Collaboration

MISP galaxy, Sync and

Merge functionalities

User management,

sharing and

collaboration

capabilities

Sharing of threat intel

data through the web

interface

Built-in messaging

system for

collaboration and

sharing

User management,

sharing and

collaboration

capabilities

Analysis

Capabilities

IOC detection and

analysis, threat

intelligence correlation

and enrichment

Threat intelligence

analysis, relation and

impact mapping, kill

chain analysis

IOC detection and

enrichment, threat

intelligence correlation

and enrichment

Malware analysis, IOC

detection and analysis,

threat intelligence

correlation and

enrichment

IOC detection and

analysis, threat

intelligence correlation

and enrichment

Graph

Generation
Yes Yes Yes Yes Yes

License

Model
AGPLv3 Apache License 2.0 GPLv3 Apache License 2.0 AGPLv3

 41

2.2 Network Intrusion Detection and Prevention System (NIDPS)

 NIDPS [54-55] is a network security technology originally built for detecting vulnerability

exploits against a target application or computer. It monitors network traffic for suspicious

activity and alerts when malicious activity is discovered. Snort, Suricata, and Zeek are

examples of NIDPS that have the capability to detect and alert when network attacks occur,

such as port scanning, network hacking, virus attacks, etc. Each program has distinct

characteristics and capabilities based on their objectives and usage. They can support both

IDS and IPS modes, while Zeek supporting only IDS mode [56]. The individual capabilities of

each solution will be discussed in detail below.

2.2.1 Snort

 Snort [57-60] is a widely recognized and extensively used Network Intrusion Detection

and Prevention System (NIDPS) developed by Martin Roesch in 1998. It continues to be actively

developed and supported by Cisco Talos. Snort is renowned for its lightweight design, cross-

platform compatibility, and open-source nature. It utilizes a rule-based language that

combines signatures, protocols, and heuristic methods to detect various forms of malicious

activities on computer networks. The main objective of Snort is to analyze network traffic in

real-time and identify potential security threats. Through deep packet inspection and logging

capabilities on IP networks, Snort is capable of monitoring and analyzing network packets as

they traverse the network [57].

One of the key features of Snort is the ability to detect and prevent a wide range of

malicious activities, including Denial-of-Service (DoS) attacks, Operating System (OS)

fingerprinting, brute force attacks, stealth scans, and probing attacks. By comparing network

packets to a set of predefined rules, Snort can differentiate between normal network traffic

and suspicious or malicious activities [58]. In addition, Snort can be configured in two main

modes: (1) passive sensor and (2) inline sensor. In the first mode, Snort analyzes network traffic

without being directly in the path of the main data stream. The passive mode allows for non-

intrusive monitoring and analysis of network traffic. In the later mode, all streaming packets

must pass through the Snort, enabling it to actively block and prevent attacks as they are

detected. In this mode, Snort functions as both an Intrusion Detection System (IDS) and an

Intrusion Prevention System (IPS). Figure 24 presents the architecture of Snort which consists

of five main components [59-60].

 42

• Packet Capture: Snort uses this module (a.k.a. Data Acquisition: DAQ) to capture

packets that enter the network. The Snort DAQ utilizes the Libpcap library to capture

packets from the Network Interface Card (NIC). The captured packets are then

forwarded to the next processing module.

• Packet Decoding: The packets that are captured and forwarded to this module are

decoded according to the structure of various network protocols to understand the

information within the packets. The decoded protocols include Ethernet, IP, ICMP, TCP,

UDP, and others. The decoded information is prepared for further processing.

• Preprocessing: It processes the decoded packets further to prepare them for detection

and analysis. It performs additional checks and processing, such as TCP reassembly

(reconstructing fragmented packets), tracking and managing TCP and UDP sessions, and

others.

• Detection Engine: This module is a crucial component that detects and analyzes

packets to identify unauthorized access. In IDS Snort, the Detection Engine uses rules

to specify the characteristics of the observed access and the actions to be taken when

packets matching the defined violation patterns are encountered. Detection and

matching of violation patterns utilize feature matching techniques, including Boyer-

Figure 24: Snort architecture

 43

Moore pattern matching and PCRE Regular Expression Engine for text-based pattern

matching. When the Detection Engine identifies packets matching the violation

patterns defined in the rules, it triggers alert events. These events can be logged or

forwarded to other notification systems such as a Security Operations Center (SOC) for

further investigation and action.

• Output Modules: These modules are used to present the results of packet detection

and analysis to system administrators or users, allowing them to be informed about

unauthorized access or detected violations. The Output Modules can generate

different formats of output, including:

o Log Files: The log files can be in plain text, CSV, XML, or database formats,

enabling users to review and analyze the data afterward.

o Statistical Reports: Statistical reports provide summarized information about

detected incidents and identified violation characteristics, such as the number

of attacks detected within a specified time period or the most frequently

observed attack patterns. Statistical reports help users adjust prevention

measures and strengthen system security.

o Alerts: Alerts can notify system administrators or users when packets matching

detection rules are encountered. Alerts can be sent as messages or notifications

through various channels, such as alert logs for future review and search

(including information about the detected packets and related violation

characteristics), network alerts using suitable network protocols like SNMP

(Simple Network Management Protocol), or notification systems like email or

online notification platforms.

2.2.2 Suricata

Suricata [61-66] is an Intrusion Detection and Prevention System (IDPS) that was

launched in 2010 by the Open Information Security Foundation (OISF), a community network

dedicated to developing open-source solutions related to network security [61]. It has been

designed to analyze and inspect real-time network communication by detecting and

preventing network attacks which support both signature-based detection and anomaly-based

detection. This versatility allows Suricata to detect both known and unknown attacks by

analyzing network packets at various layers, ranging from the data link layer to the application

layer. On the one hand, it provides the capability detecting and preventing malicious activities

 44

on the network. In IDS (Intrusion Detection System) mode, it can notify and log events when

an attack is detected. On the other hand, in IPS (Intrusion Prevention System) mode, Suricata

can directly take action to prevent and eliminate harmful activities. It utilizes rules to detect

attacks in the form of the Suricata rules language, which is compatible with Snort rules.

Additionally, it offers flexibility to customize rules according to specific requirements. The

detection results and reporting can be presented in various formats, such as text-based alerts

or JSON [47], enabling system administrators to quickly become aware of events and respond

to attacks promptly [63].

Suricata also offers a very extensive list of features. One of the important features is

Suricata threading which provides the capability of running multiple threats on multi-core

architecture for enhancing the processing efficiency. According to Figure 25 present the

threading architecture of Suricata which consists of four threat modules.

• Packet acquisition: It is responsible for reading packets from the network.

• Decode and stream application layer: This module decodes the packets and

inspects the application.

• Detection: After decoding, the packets are forwarded to the detection module to

analyze the attacks with regards to signature-based detection. The detection process

can be run in multiple threats for improving the processing efficiency.

• Output: Once the detection process is complete, it generates output which can be in

the form of log files or notifications through the console. The objective is to inform

system administrators about the events and enable timely responses to attacks.

Figure 25: Threading architecture of Suricata

 45

Furthermore, Suricata shares a similar architecture with Snort by dividing the components

of preprocessors in Snort's architecture into two parts: (1) the decoding module enriches the

internal representation of packets in Suricata with additional information; and (2) the detection

module relies on the rules defined to detect the attacks and employs rules written in the

Suricata rules language, which is compatible with Snort rules. Suricata supports rules at layer

3, layer 4, and layer 7. The rules contain signatures that match the content within packets. In

addition, the detection module can be divided into multiple modules to handle packets and

rule matching. If a packet matches a dangerous pattern according to the rules, it is forwarded

to the output phase [64-66].

2.2.3 Zeek

 Zeek [67-69] is an open-source network traffic analyzer program that operates

passively. It is primarily used as a Network Security Monitor (NSM) to detect and support the

investigation of suspicious or dangerous activity on the network. Zeek can also be used to

analyze and troubleshoot network performance issues [66]. The program generates logs that

provide a detailed description of network activity, including application-layer transcripts such

as HTTP sessions, DNS requests, SSL certificates, SMTP sessions, and more. These logs can be

written in tab-separated or JSON file formats, suitable for post-processing with external

software. Nowadays, Zeek has been developed with a wide range of analysis and detection

functions. For example, file extraction from HTTP sessions, malware detection by connecting

to external registries, reporting of software vulnerabilities on the network, SSH brute-forcing

detection, SSL certificate chain verification. The platform is fully customizable and extensible

for traffic analysis using a Turing-complete scripting language that can be used freely. Zeek

supports running on affordable hardware, making it a cost-effective solution for traffic analysis

[56].

 In addition to the Zeek architecture (shown in Figure 26), it can be divided into two

major components: Event Engine and Policy Script Interpreter.

• Event Engine (or Core): It receives packets from the network and converts them into

higher-level events that describe network activity in a policy-neutral manner. These

events do not provide the meaning of network activity or indicate their importance.

For example, every HTTP request turns into a corresponding ‘http_request’ event that

specifies the IP address, port, URI, and HTTP version involved. However, this event

does not provide any further interpretation, e.g., whether the URI is a malware site or

 46

not [69]. In the Event Engine, it includes several subcomponents, such as (1) input

sources that receive traffic from network interfaces, (2) packet analysis that examines

different protocols starting from the link layer, (3) session analysis that handles

application-layer protocols like HTTP and FTP, and (4) file analysis that analyzes the

content of files transferred over sessions. Moreover, Event Engine also provides a

plugin architecture that allows users to expand Zeek's capabilities as needed.

• Script Interpreter: It executes a set of event handlers written in Zeek’s custom

scripting language. These scripts can express a site’s security policy (i.e., what actions

to take when the monitor detects different types of activity). More generally, they can

derive any desired properties and statistics from the input traffic, while maintaining the

state of the script over time, enabling correlation across connections and host

boundaries. Zeek's language comes with extensive domain-specific types and support

functionality; and allows scripts to maintain state over time, enabling them to track

and correlate the evolution of what they observe across connection and host

boundaries. Zeek scripts can generate real-time alerts and also execute arbitrary

external programs on demand, allowing users to trigger active responses to attacks.

2.2.4 Functionality analysis

 Table 5 provides a comparison of the key features of popular open-source intrusion

detection and prevention software: Snort3, Suricata, and Zeek.

Figure 26: Zeek architecture

 47

Table 5: Comparison of Open-Source NIDPS

Feature Snort3 Suricata Zeek

Software Type IDS/IPS IDS/IPS IDS

 Language C C C++/Bro Script

Input Sources
Network tap or switch

span/mirror port or pcap files

Network interface or pcap files

or syslog, NetFlow, IPFIX, sFlow,

FTP, DNS, HTTP, and others

Network tap or switch

span/mirror port

Detection

Mode
Passive mode, inline mode Passive mode, inline mode Passive mode

Prevention

Capability

Available (requires Snort

Inline or third-party plugins)
Available Not available

Rule Usage Can use Snort rules Can use Suricata rules
Can use Bro Script or Suricata

YAML rules

Rule Creation
Can create rules using Snort

rules

Can create rules using Suricata

rules
Can create rules using Bro Script

Rule

Management

Snort rules language, popular

and standardized

Suricata rules language, flexible

and supports Snort rules

Bro Script language, which may

be complex for non-programmers

Log Viewing GUI for log viewing GUI for log viewing
Command-line interface for log

viewing

Log Recording

Capable of recording network

activity logs

Capable of recording network

activity logs

Capable of recording network

activity logs

Performance
High-performance but

resource-intensive

High-performance with lower

resource usage than Snort

High-performance but resource-

intensive

Detection

Capability

Can detect various network

attacks

Can detect various network

attacks

Can detect various network

attacks

Alerting

Can send email notifications

or display on GUI

Can send email notifications or

display on GUI

Can send email notifications or

display on GUI

Encoding Protocol-specific Protocol-specific Protocol-independent

Vulnerability

Detection Signature-based

Signature-based, anomaly-

based Signature-based, anomaly-based

Data Format

Support Unified2, syslog EVE JSON, unified2 Bro logs, JSON

Advanced

Detection Not available

Custom events and packet

analysis

Custom events and packet

analysis

DDoS

Mitigation Not available Supported (in inline mode) Not available

Event Handling

Log files, alert messages,

email notifications

Log files, alert messages, email

notifications

Log files, alert messages, email

notifications

 48

3. Data visualization dashboard

 Understanding data is the key to making the best decisions for any business. Therefore,

data visualization dashboard is considered as an important part of today’s analytics-driven

enterprise. It provides a way to organize and display data clearly and concisely, allowing users

to identify the key trends, patterns, and insights quickly. It also provides decision-makers with

a high-level view of the most important metrics, by combining numbers, charts, graphs, and

other graphics to represent the complex data into an easy-to-understand format [70]. This will

help users to identify when problems arise in their business systems or operations, by

monitoring, analyzing, displaying the key metrics, and providing data-driven decision-making

to improve their organization performance. In other words, dashboards enable technical and

non-technical users to understand and apply business intelligence to make better decisions

[71]. Users can actively participate in the analysis process by compiling data and visualizing

trends to obtain the results. It is also used to convey messages and understand patterns

easily, allowing users to gain a better understanding about the relationships between the

data and the key metrics of interest. One of the major benefits of using data visualization

dashboard is to provide users with faster decisions and better organization performance. Thus,

choosing the right program for data visualization dashboard is crucial because it can help data

analysts to analyze data quickly and efficiently. With charts and visualizations in graphic and

table format, it is easier to present and understand data. In this review, we will discuss in more

details about the widely used tools for dashboard visualization: Apache Superset, Grafana,

Metabase, and Kibana.

3.1 Apache Superset

 Apache Superset [72] is an open-source software tool for data exploration and analysis

that enables users to easily create and display data visualizations. Apache Superset has the

ability to create various forms of visualizations, including bar charts, line charts, pie charts,

histograms, scatter plots, and heatmaps. This tool provides a great way to see about the

summary of all data, allowing users to quickly understand its distribution and relationship.

Apache Superset also provides user-friendly interface for data exploration and analysis, and

allows for the creation of dashboards that can be shared among users. It supports enterprise-

ready authentication and high-granularity security/permission settings in order to protect data

from unauthorized access by allowing only the users who are authorized. Apache Superset

 49

has been developed based on three main modules: (1) data visualization which creates

visual representations of data in an easily understandable form; (2) data exploration which

is the process of examining data from different perspectives to understand its content in new

and creative ways; and (3) data analysis is the process of specifying metrics, verifying

problems, and making decisions.

3.1.1 Main Features

The main features of Apache Superset are as follows.

• A rich set of data visualizations which offers a wide range of data visualization options

such as bar charts, line charts, pie charts, histograms, scatter plots, heatmaps, etc.

These visualizations help users to easily understand and insight about the complex

data.

• Easy-to-use interface for exploring and visualizing data in order to provide user-friendly,

enabling users to quickly create charts, add filters, share dashboards, and apply various

settings to customize their data views.

• Enterprise-ready authentication which allows for integration with major authentication

providers. For example, database, OpenID, LDAP, OAuth & REMOTE_USER through Flask

AppBuilder.

• An extensible, high-granularity security/permission model for allowing intricate rules

on who can access individual features and the dataset

• A simple semantic layer for allowing users to control how data sources are displayed

in the UI by defining which fields should show up in which drop-down and which

aggregation and function metrics are made available to the user

• Integration with most SQL-speaking RDBMS through SQLAlchemy

• The integration with Druid.io enables Apache Superset to handle complex data

structures and schemas, making it a powerful tool for data analysis and exploration.

3.1.2 Databases

Apache Superset provides a wide range of functionalities for connecting to various

databases and tools, seamlessly integrating with almost all major databases. This makes data

 50

visualization and analysis easier, ultimately leading to more efficient model development.

Apache Superset is compatible with numerous databases such as Amazon Athena, Amazon

Redshift, Apache Drill, Apache Druid, Apache Hive, Apache Impala, Apache Kylin, Apache Pinot,

Apache Spark SQL, BigQuery, CockroachDB, Elasticsearch, IBM, Snowflake, SQLite, and SQL

Server, among others. Other database engines that have a proper DB-API driver and

SQLAlchemy dialect should also be supported by Apache Superset.

3.1.3 Types Of Visualization

Apache Superset offers a wide range of visualization types, including bar charts, line

charts, area charts, pie charts, donut charts, time series charts, heatmaps, scatter plots, bubble

charts, box plots, tree maps, sunburst charts, Sankey diagrams, chord diagrams, word clouds,

Mapbox visualizations, scatter plot, grid, polygons, path, screen grid, and acrs. These

visualizations can be customized and configured to suit specific data analysis needs. Example

visualizations can be seen in Figure 27-28.

Figure 27: Type of virtualization

Figure 28: : Different types of Visualization offered by superset

 51

3.2 Grafana

Grafana [73] is a powerful open-source tool that enables users to query, visualize, alert

on, and explore metrics, logs, and traces from a variety of data sources. Using Grafana, users

can easily transform their time-series database data into clear and insightful graphs and

visualizations. Although it doesn't have built-in data collection capabilities, Grafana provides

support for a wide range of data sources and offers a unique query editor for each of them,

allowing for seamless integration and analysis of diverse data sets. Grafana is a running process

that can be accessed via a web browser on your computer or server, providing easy and

flexible access to your data. Additionally, users can configure visual alerts in their graphs, and

set up Grafana to send notifications via email or other channels when alerts are triggered. The

main features of Grafana include (1) user-friendly client charts and dashboard plugins for easily

interpreting complex data, (2) supporting for multiple data sources with different time series,

such as Graphite, InfluxDB, OpenTSDB, Prometheus, and Elasticsearch, (3) the ability to display

data from multiple sources for the same business on a single dashboard, and (4) the ability

to quickly share dashboards to facilitate collaboration in data analysis and troubleshooting.

3.2.1 Dashboards

A dashboard in Grafana [74-75] is a collection of one or more panels that are arranged

into rows and columns. Grafana provides a wide range of panels that make it easy for users

to build queries and customize visualizations according to their specific needs. In addition to

these features, it includes a "variables" feature that allows the selection of a target in the

dashboard, making it possible to use the same dashboard for multiple targets. It also offers a

playlist option that allows users to create a playlist of pre-made dashboards. When the playlist

is played, the dashboards change like a slideshow, with the time between each dashboard

configurable. Moreover, Grafana provides several other display options, including statistical

graphs that can display graphs based on statistics over a specified time period, tables for

displaying data in tabular format, and 3D line charts (as shown in Figure 29). Furthermore,

there are additional options called "panel plugins" that allow users to add additional display

functions as needed. Users can also configure time settings to display data in a way that suits

their needs. For example, users can specify the start and end times of the time range they

wish to view, or they can specify the time range they want to display. Additionally, Grafana

provides efficient display options that can be customized to meet specific needs.

 52

3.2.2 Panels and Visualizations

The panel is the basic visualization building block in Grafana. Each panel has a query

editor specific to the data source selected in the panel. The query editor allows users to build

a query that returns the data they want to visualize. There are a wide variety of styling and

formatting options for each panel. Panels can be dragged, dropped, and resized to rearrange

them on the dashboard. Example of Gafana dashboard with different panels is shown in Figure

29. The built-in panels (shown in Figure 30) which are frequently used, can be categorized as

follows:

Figure 29: : Example dashboard with different panels.

Figure 30: : : List of panel options and visualization

 53

• Graphs & charts

o Time series is the default and main Graph visualization.

o State timeline for state changes over time.

o Status history for periodic state over time.

o Bar chart shows any categorical data.

o Histogram calculates and shows value distribution in a bar chart.

o Heatmap visualizes data in two dimensions, used typically for the magnitude

of a phenomenon.

o Pie chart is typically used where proportionality is important.

o Candlestick is typically for financial data where the focus is price/data

movement.

• Stats & numbers

o Stat for big stats and optional sparkline.

o Bar gauge is a horizontal or vertical bar gauge.

• Misc

o Table is the main and only table visualization.

o Logs is the main visualization for logs.

o Node Graph for directed graphs or networks.

o Traces is the main visualization for traces.

o Flame Graph is the main visualization for profiling.

• Widgets

o Dashboard list can list dashboards.

o Alert list can list alerts.

o Text panel can show markdown and html.

o News panel can show RSS feeds.

In addition to the features mentioned earlier, Grafana also includes a search tool that

allows users to find dashboards with names or descriptions that match specific keywords.

Advanced search is also available, where users can specify different conditions such as time,

tool name, or data source. Additionally, Grafana has an Alerting system that makes it easy and

convenient for users to set up alert conditions. Users can set up alert conditions in various

ways, such as configuring Grafana to send email notifications when a metric exceeds a specified

 54

value or when errors occur in creating or displaying dashboards. Grafana provides users with

flexible alerting channels to receive notifications, including email and other channels that

users can define.

3.2.2 Alert configuration and usage

Grafana has the ability to connect and display data from various sources on a

dashboard, and provides tools for setting up alerts to notify users of any events that require

attention. These alerts can be sent through various channels such as email, Line or Slack, and

users can customize the conditions and notification methods according to their needs. To set

up an alert in Grafana, users need to follow these steps:

• Alert condition: users need to define the conditions for triggering an alert in Grafana. For

example, they may want to be alerted when there is an abnormal amount of access

attempts, such as an increase in the number of users accessing a website beyond the daily

average, or when there is access from an IP address that has never been used before.

Users can use Grafana's query tools to create equations or conditions for monitoring.

• Notification method: users need to set up the notification method to send an alert

message to the recipient. For example, they may want to send an email or a notification

message to a mobile app. Users can customize the communication channels and details

according to their needs.

• Alert settings: users need to configure the settings to enable Grafana to work according to

the conditions and notification methods set. Users can customize the title and message

of the alert, the status check interval, and whether to turn the alert on or off. Additionally,

Grafana keeps a history of alerts and users can view the status and history of alerts on the

Alert tab of the dashboard or the Alert List page.

3.3 Metabase

 55

Metabase [76] is an open-source business intelligence and data visualization tool that

enables connectivity to databases, execution of SQL queries, and creation of charts,

dashboards, and reports. It is designed to be user-friendly and accessible to non-technical

users. One of Metabase's key features is its ability to connect to a wide range of data sources,

including SQL databases such as MySQL and PostgreSQL, cloud storage services like Amazon

S3 and Google Drive, and even APIs and webhooks. This enables easy integration of data from

multiple sources to create a consolidated view of business metrics. Metabase also boasts a

powerful query builder that enables the creation of complex SQL queries using a visual

interface, without the need to write any code. This simplifies data exploration and allows non-

technical users to ask questions without relying on data analysts or developers. After data

acquisition, Metabase allows for easy creation of beautiful and interactive charts and

dashboards. With a range of chart types, including line, bar, and pie charts, and a drag-and-

drop interface for customization, users can create personalized visualizations. Additionally,

interactive dashboards enable real-time data filtering and exploration. The example of

Metabase dashboard is shown in Figure 31.

3.3.1 Main Features

The main features of Metabase can be described as follows.

Figure 31: Metabase dashboard

 56

• Database connectivity: This feature allows users to connect to the desired database, such

as MySQL, PostgreSQL, Amazon Redshift, Google BigQuery, MongoDB, Presto, Athena,

Snowflake, Oracle, and others, enabling users to access data as needed.

• Query Building: This feature allows users to easily create SQL queries using the user

interface without having to write SQL themselves, making it easier for users to understand

the data.

• Visualization: The visualization feature in Metabase allows users to create comprehensive

graphs and dashboards that display data accurately. Users can select from various chart

formats, such as line charts, bar charts, pie charts, and others, and customize them

according to their preferences, including color, size, position, format, and even export

them as images or embed them in websites and applications.

• Real-time data display: The real-time data display feature enables users to display data in

real-time using the dashboard, allowing them to monitor changes in their data promptly.

The auto-refresh feature updates and displays new data automatically at a set interval,

such as every 5 seconds or 1 0 minutes. Furthermore, Metabase supports real-time data

display using the Streaming API connector, which connects to the streaming system of

each database, such as Apache Kafka or AWS Kinesis, to receive and display data

automatically. The Streaming API reduces latency when displaying data during changes in

the system.

• Permission: Metabase also offers a robust permission setting feature that enables users to

control data access rights for different users. Users can assign access rights at various levels,

such as viewing only their own dashboards or accessing specific rows in a database table.

Users can manage access rights by defining roles and permissions in Metabase, where roles

are user groups, and permissions are access rights assigned to each role as determined by

the user.

3.4 Kibana

Kibana [18,24,77] is an open-source data visualization and exploration tool designed

to work with Elasticsearch. It allows users to create interactive dashboards and visualizations

to analyze data and gain insights. With Kibana, users can easily navigate through large data

sets and create various types of charts such as line graphs, bar graphs, and pie charts. It works

 57

in conjunction with Elasticsearch and Logstash form the ELK stack, which is commonly used

to manage and analyze large volumes of log data. Logstash collects data from various sources

and sends it to Elasticsearch, which then serves as a database where data can be queried and

retrieved by Kibana for visualization. In addition to its visualization capabilities, Kibana offers

features such as index pattern management, mapping, and search functionality. It provide

user-friendly interfaces, making easy for users to customize and configure their dashboards

according to their specific needs. This feature makes Kibana a powerful tool for data analysis

and visualization that can help organizations to obtain a better-informed decision based on

their data.

When considering the Kibana visualizations, it has been designed and can be integrated

with Elasticsearch. Kibana simply supplies the UI to use these aggregations for defining the

different dimensions on display in visualizations. There are two types of aggregations: (1)

bucket aggregations groups documents together in one bucket according to your logic and

requirements; and (2) metric aggregations are used to calculate a value for each bucket based

on the documents inside the bucket. Each visualization type presents buckets and their values

in different ways. So in a pie chart for example, the number of slices is defined by the Buckets

aggregation while the size of the slice is defined by the Metric aggregation. Kibana supports

quite a large number of Elasticsearch aggregation types, each with specific configuration

options and field type limitations. Histogram and Date Histogram Bucket aggregations, for

example, will only work on integers. The Min and Max Metric aggregations will only work on

number or date fields while the Unique Count Metric aggregation works on any field type.

3.4.1 Kibana features

Kibana offers several features which are described as follows.

• Visualization: Kibana has a lot of ways to visualize data in an easy way. Some of the

ones which are commonly used are vertical bar chart, horizontal bar chart, pie chart,

line graph, heat map etc.

• Dashboard: When we have the visualizations ready, all of them can be placed on one

board- the Dashboard. Observing different sections together gives you a clear overall

idea about what exactly is happening.

 58

• Dev Tools: User can work with your indexes using dev tools. Beginners can add dummy

indexes from dev tools and also add, update, delete the data and use the indexes to

create visualization.

• Reports: All the data in the form of visualization and dashboard can be converted to

reports (CSV format), embedded in the code or in the form of URLs to be shared with

others.

• Filters and Search query: Users can make use of filters and search queries to get the

required details for a particular input from a dashboard or visualization tool.

• Plugins: You can add third party plugins to add some new visualization or also other

UI addition in Kibana.

• Coordinate and Region Maps: A coordinate and region map in Kibana helps to show

the visualization on the geographical map giving a realistic view of the data.

• Timelion: It also called as timeline is yet another visualization tool which is mainly

used for time based data analysis. To work with timeline, we need to use simple

expression language which helps us connect to the index and also perform

calculations on the data to obtain the results we need. It helps more in comparison

of data to the previous cycle in terms of week , month etc.

• Canvas: Canvas is yet another powerful feature in Kibana. Using canvas visualization,

you can represent your data in different colour combinations, shapes, texts, multiple

pages basically called as workpad.

3.4.2 Types Of Visualization

Visualizations in Kibana are categorized into five different types (as shown in Figure 32),

which are grouped based on their characteristics and usage. These types include:

 59

• Basic Charts: This category includes commonly used visualizations such as Area, Heat

Map, Horizontal, Bar, Line, Pie, and Vertical Bar, which are used to display data in

various forms, especially related to trends and data relationships.

• Data: This category includes visualizations related to numeric data, such as Data Table,

Gauge, Goal, and Metric, used to display numerical data and data relationships.

• Map: This category includes visualizations related to maps, such as Coordinate Map

and Region Map, used to display data according to geographic coordinates and

different regions.

• Time Series: This category includes visualizations related to time-based data, such as

Timelion and Visual Builder, used to display trends and changes in data over a specified

period of time.

• Other Visualizations This category includes other visualization types, such as

Markdown, Tag Cloud, Vega, Vega-Lite, and Graph, used to display data in different

forms and formats that are distinct from the other visualization types.

Figure 32: Type of visualization

 60

3.4.3 Security Analytics

Security analytics with Kibana is the use of Kibana to analyze and monitor security-

related data, using logs and Elasticsearch stored in an ELK stack, to investigate attack details

and manage the results of the received data analysis. This increases the efficiency in

responding to security risks in an organization. Kibana can be used in security analytics through

the following functions.

• Dashboard: Use the Dashboard to display information related to security, such as the

number of detected attacks and attack statistics.

• Search: Use the Search function to find log data related to security, such as searching

for IP addresses that have unauthorized access.

• Filter: Use the Filter function to filter log data related to security, such as selecting logs

that contain keywords like "attack" or "malware."

• Visualization: Use Visualization to present log data in an easy-to-analyze format, such

as using Pie Chart to show attack statistics by attack type.

• Machine Learning: Use Machine Learning to automatically analyze and verify log data.

Machine Learning uses log data to create a model to detect and identify security risks,

separating logs into anomalies and normal data.

After the model has been created, it can be used to check log data in real-time

automatically. Machine Learning examines each log item to determine whether it falls into

the risk group based on the created model. If there is any risk, the system will display an alert

to the administrator, allowing them to respond to the risk promptly. The alerting system in

Kibana includes three primary components.

• Alerting Framework: Collects and manages notification channel and condition settings

for alerts.

• Notification Channels: Notification channels that users can set up, such as email, Slack,

or webhook, are used to send alert messages to designated users.

• Alerting rules: The conditions set up to monitor data in Elasticsearch. When the

established conditions are met, the system sends an alert to the designated

notification channel.

 61

Once alert conditions are set up, Kibana constantly monitors related data, and Machine

Learning automatically improves its model to enhance the accuracy of risk detection in the

future.

3.5 OpenSearch

Dashboards are indeed a valuable tool in OpenSearch [78-79] for visualizing data without

the need for extensive coding. They provide a user-friendly interface for creating and displaying

visualizations and interactive charts based on the data stored in OpenSearch. With dashboards,

users can easily explore and analyze data, create informative visual representations, and gain

insights without the requirement of coding a complete framework from scratch. Figure 33 and

Figure 34 exemplified the OpenSearch dashboards and several types of visualizations that can

be utilized within the dashboards.

• Area controls: Visual representations that allow users to interact with a set of controls

affecting other visualizations on the dashboard.

• Coordinate map: It displays data on a map, allowing users to visualize spatial patterns

and relationships.

• Data table: Data table presents data in a tabular format, making it easy to view and

analyze structured information.

 62

• Gantt chart: which shows the duration and scheduling of tasks or events over a specific

timeframe.

• Gauge: It used to represent a measurement, typically displaying a single value within

a defined range.

• Goal: The objective is to visualize progress towards a specific target or objective.

• Heat map: It depicts data using color intensity to highlight patterns and variations.

• Horizontal bar: which displays categorical data using horizontal bars to compare values

across different categories.

Figure 33: OpenSearch dashboards

Figure 34:Types of visualization

 63

• Line: which illustrates data trends over time, showing the relationship between

variables.

• Markdown: Enabling users to include text and formatting within the dashboard to

provide explanations or additional information.

• Metric: It shows a single value or measurement, often used to display key performance

indicators (KPIs).

• Pie: which represents data as a circular chart divided into slices, representing

proportions or percentages.

• Region map: which displays data on a geographic map, emphasizing different regions

or areas.

• TSVB (Timelion, Time Series Visual Builder): OpenSearch fffers advanced time series

visualizations, such as forecasting and anomaly detection.

• Tag cloud: which represents text data where the importance or frequency of terms is

depicted using font size or color.

• Timeline: which provides a chronological representation of events or activities.

• Vega: Enabling users to create custom visualizations using the Vega specification

language.

• Vertical bar: Similar to the horizontal bar charts, which displays categories vertically.

3.6 Functionality analysis

 Table 6 provides key features comparison between Apache superset, Grafana,

Metabase, Kibana, and OpenSearch.

 64

Table 6: Functionality analysis for different open sources data virtualization platforms.

Feature
Apache

Superset
Grafana Metabase Kibana OpenSearch

License

Model

Apache License

2.0
AGPLv3 AGPLv3 Elastic License Apache License 2.0

Data

sources

Supports various

data sources

such as SQL

databases, Druid,

and CSV files

Supports various

data sources

including Graphite,

Prometheus,

Elasticsearch, and

InfluxDB

Supports data

sources such as

MySQL,

PostgreSQL, and

MongoDB

Supports data

sources such as

Elasticsearch

OpenSearch

supports data

sources such as

Elasticsearch

Data

Visualization

Provides a variety

of visualization

options such as

charts, tables,

heatmaps, and

geospatial maps

Offers a wide range

of visualization

options including

graphs, charts,

gauges, and

heatmaps

Offers

visualization

options through

charts and tables

and provides a

simple drag-and-

drop dashboard

builder

Offers visualization

options through

graphs, charts, and

tables, and is

particularly useful

for analyzing log

data from

Elasticsearch

Offers visualization

options through

graphs, charts, and

tables, and is

particularly useful

for analyzing log

data from

Elasticsearch

Data

Filtering

Allows users to

filter data

through a range

of options such

as sliders,

checkboxes, and

date pickers

Provides a flexible

filtering system that

allows users to filter

data by time range,

tag, and field value

Provides a range

of filtering options

such as filters,

segments, and

custom questions

Provides a powerful

filtering system that

allows users to filter

data through a

range of options

including queries

and time ranges

Provides a powerful

filtering system that

allows users to filter

data through a

range of options

including queries

and time ranges

Alerting

Has built-in

alerting and

notification

system that

sends

notifications

through email or

Slack

Has a built-in

alerting system that

can send

notifications

through email,

PagerDuty, and

other third-party

integrations

Has built-in

alerting that can

send notifications

through email or

Slack

Has built-in alerting

that can send

notifications

through email and

webhooks

Has built-in alerting

that can send

notifications through

email and

webhooks

Data

Comparison

Offers the ability

to compare data

through time-

series or scatter

plots

Supports data

comparison through

multiple data

sources and time

ranges

Does not support

data comparison

Does not support

data comparison

Does not support

data comparison

 65

Report

Creation

Allows users to

create reports

using a simple

drag-and-drop

interface

Allows users to

create customized

reports using

Grafana panels and

templates

Allows users to

create reports

through a range of

options including

questions,

dashboards, and

pulses

Allows users to

create reports

through a range of

options including

dashboards,

visualizations, and

canvas

Allows users to

create reports

through a range of

options including

dashboards,

visualizations, and

canvas

Ad-hoc

Querying

Provides ad-hoc

querying

capabilities

through SQL Lab

and Druid

Provides ad-hoc

querying through

Grafana's Explore

feature

Provides ad-hoc

querying through

a custom SQL

editor and by

using the "Ask a

question" feature

Provides ad-hoc

querying through

the Query Bar and

the Discover feature

Provides ad-hoc

querying through

the Query Bar and

the Discover feature

Machine

learning

support

Superset does

not have direct

machine learning

support.

However, it can

connect to

databases with

ML data, enabling

users to manage

and display the

data through the

platform.C16

Grafana Enterprise,

offered by Grafana

Labs, provides

machine learning

support for

predictive analytics

and anomaly

detection. Supports

Prometheus,

Graphite,

Elasticsearch,

InfluxDB, and

OpenTSDB data

sources.

Metabase does

not have direct

machine learning

support. However,

it can connect to

databases with

ML data, enabling

users to manage

and display the

data through the

platform.

Kibana offers

machine learning

support through its

X-Pack feature for

automated analysis

and prediction, such

as anomaly

detection and

model forecasting.

This feature is only

available in the paid

version of X-Pack.

The free version

does not include

this feature.

OpenSearch does

not have direct

machine learning

support. However, it

can connect to

databases with ML

data, enabling users

to manage and

display the data

through the

platform.

 66

4. Signal alerting service

A Signal alerting service is a critical tool for managing computer systems and networks,

providing valuable benefits in notifying system administrators of important events on the

system. For example, cyber attacks or system hacks. With the ability to manage large amounts

of data from multiple sources in a Security Information and Event Management (SIEM) system

and alert system administrators to important events, system administrators can be informed

of significant events immediately and manage them as quickly as possible. The programs used

to create Signal alerting services have different capabilities and features. They can be

explained as follows:

4.1 ElastAlert

 ElastAlert [80-81] is an open-source tool that provides a practical example for detecting

and alerting on events in Elasticsearch. Elasticsearch is a high-performance, distributed, NoSQL

database and search engine. It is developed using the Elasticsearch open command and

written in Python to enable users to define rules or conditions for monitoring data in

Elasticsearch and receive notifications when these conditions are met. For example, it can

detect unauthorized access attempts in Elasticsearch, identify log patterns, or capture values

that exceed specified limits. Additionally, ElastAlert adopts a YAML-like rule format, making it

convenient for users to define monitoring rules and conditions. When ElastAlert detects a

match based on the defined rules, it passes the match dictionary to the specified

enhancements. This allows users to easily customize or enrich the notification before sending

it to the desired alerting channels. For instance, additional data can be added from other data

sources, data formats can be modified, or the alert message content can be customized as

show in figure 35 [80].

Figure 35: ElastAlert workflow

 67

The workflow of ElastAlert [80] involves using Elasticsearch along with two essential

components: rule types and alerts. Elasticsearch is queried periodically to check data within

the specified timeframe. The returned data is then processed by the defined rule types to

determine matches based on the specified search conditions. Once matches are found, they

are sent to the designated alerting system or multiple systems for further action based on the

specified conditions. Also, ElastAlert supports various rule types that are familiar and available

in ElastAlert. For example, frequency type (i.e., match where there are X events in Y time),

spike type (i.e., match when the rate of events increases or decreases), flatline type (i.e., match

when there are less than X events in Y time). Additionally, it provides support for a wide range

of alerting channels, including Command, Email, JIRA, OpsGenie, SNS, HipChat, Stride, MS

Teams, Slack, Mattermost, Telegram, Google Chat, PagerDuty, PagerTree, Exotel, Twilio,

VictorOps, Gitter, ServiceNow, Debug, Alerta, Stomp, theHive, HTTP POST, Alerter, Line Notify,

Zabbix, and more. Users can easily import or customize rule types and alerts to meet specific

requirements. ElastAlert offers flexibility and extensibility, allowing users to tailor their alerting

workflows accordingly. Additionally, it provides additional features to enhance the usefulness

of alerts, such as linking alerts to Kibana dashboards, aggregating field values, generating

periodic reports, separating alerts using unique key fields, and intercepting and enhancing the

matching data. The following are some examples of alert types commonly encountered in

ElastAlert:

• Frequency alert: This type of alert checks for the occurrence of events within a

specified time period and generates an alert when events meet the defined conditions.

For instance, detecting excessive unauthorized access attempts within a short period

of time.

• Flatline alert: This alert monitors activity or events that deviate significantly from the

normal baseline and generates an alert when no events or significant changes occur

within a specified time frame. For example, detecting a sudden drop in the frequency

of important server activities.

• Blacklist/Whitelist alert: This alert type checks data against a list of allowed or

disallowed items (blacklist/whitelist) and generates an alert when the data matches

the defined list. For instance, detecting the presence of dangerous filenames in a list

of operations.

 68

• Spike alert: This alert type detects events that exhibit a significant increase within a

specified time period and generates an alert when there is a rapid surge. For example,

detecting a notable surge in Distributed Denial of Service (DDoS) attack requests within

a short period.

• Any/Threshold alert: This alert type checks for events that meet or exceed a defined

threshold or criteria and generates an alert when the conditions are met. For example,

detecting more than three instances of incorrect password attempts within a specified

time frame.

• Composite alert: This alert type involves creating complex rules and conditions by

combining multiple data elements to detect and generate alerts. For example,

detecting abnormal access attempts from multiple locations along with suspicious

login attempts using compromised user accounts.

4.2 Alertmanager

Alertmanager [82-83] is an open-source program developed by the Prometheus project

team, which is a system for event and alert management in IT infrastructure systems.

Alertmanager is a part of the Prometheus ecosystem and is used to receive and manage alerts

sent by event detection and system status monitoring systems in Prometheus. Typically,

Alertmanager is used to connect with Prometheus and receive alert data from Prometheus

and connected event detection systems [82]. Then, Alertmanager handles these alerts and

sends them to recipients or communication channels such as email, Slack, PagerDuty, or

custom-defined webhooks. Alertmanager supports deduplication of redundant alerts and

repetitive notifications. Additionally, it supports grouping, silencing, and customizable alert

template configuration, providing flexibility in managing alerts. When Prometheus detects

Figure 36: The architecture of Alertmanager with multiple Prometheus Servers

 69

abnormal or exceeding values in the collected metrics, Alertmanager takes responsibility for

deduplicating, grouping, and sending appropriate notifications to recipients or notification

channels. The separation between monitoring (Prometheus) and alerting (Alertmanager)

enables efficient tracking and management of notifications in complex environments, as

depicted in Figure 36 [83].

• Alertmanager Server: It serves as the core component of Alertmanager, responsible for

receiving alert data and executing defined rules and configurations. This central server

manages incoming alert data and processes the alert status. The Alertmanager server

can be configured to operate in a single-node mode or high-availability mode, where

multiple Alertmanager servers work together to handle failures and ensure availability.

• Alerting Rules: Alerting rules are crucial in Alertmanager as they define conditions and

the order of alerts based on their importance. Alerting rules utilize a Boolean

expression language to evaluate events and select appropriate alerting scopes.

• Notification Channels: Alertmanager supports multiple diverse notification channels,

including email, Slack, PagerDuty, webhooks, and more. Users can configure and

customize notification channels according to their organizational requirements.

• Grouping: Alertmanager can group closely occurring alerts to reduce redundant

notifications and enhance alert management efficiency. Grouping can be done based

on user-defined criteria, such as event sources (e.g., alerts from different sources),

event importance levels, or predefined notification plans.

• Silencing: Alertmanager features silencing capabilities that help reduce unnecessary or

repetitive notifications. Users can define a duration to silence specific alert conditions

and prevent notifications during specific time periods.

• Notification Templates: Alertmanager allows users to define and customize notification

formats and templates. Users can tailor the content of notifications, such as text, links,

or additional information, to be displayed in the notifications.

4.3 Shinken

Shinken [84] is an open-source monitoring tool written in Python under the GNU Affero

General Public License. It is designed to notify users or system administrators about critical

events or issues detected by the monitoring system. When a problem is detected, such as a

 70

service outage or a performance degradation, Shinken Signal sends alerts through various

channels such as email, SMS, or integrations with messaging platforms like Slack or PagerDuty.

The architecture of Shinken follows a distributed and modular design, allowing for

scalability, flexibility, and customization. Here are the key components and their roles in the

Shinken architecture:

• Shinken Core: The core is the central component responsible for coordinating all

monitoring activities. It handles the scheduling of checks, event processing, and

notification distribution. It also manages the configuration files and communicates

with other components.

• Pollers: Pollers are responsible for executing monitoring checks. They collect data

from hosts and services by running plugins or scripts and send the results back to

the core for processing. Pollers can be distributed across multiple machines to

handle a large number of checks efficiently.

• Reactionners: Reactionners handle the event-driven actions triggered by the

monitoring system. They process events such as service alerts, downtime

scheduling, or rechecks. Reactionners can perform actions like sending

notifications, executing recovery scripts, or triggering automated responses.

• Arbiters: Arbiters manage the configuration and monitoring objects. They validate

the configuration files, resolve dependencies between hosts and services, and

distribute the configuration changes to the relevant components. They ensure that

the monitoring setup remains consistent and up to date.

• Brokers: Brokers handle the communication between the core and external

systems. They receive monitoring events, metrics, and status updates from the

core and forward them to external systems for processing or visualization. Brokers

can integrate with various tools like databases, message queues, or dashboard

applications.

• Web UI: Shinken provides a web-based user interface for monitoring administration

and visualization. The UI allows users to configure monitoring objects, view status

information, acknowledge alerts, and access historical data. It provides a

convenient way to manage the monitoring infrastructure.

• Modules: Shinken supports various modules that extend its functionality. These

modules can provide additional checks, integrations with external tools, or custom

 71

actions. Modules are developed separately and can be easily integrated into the

Shinken framework.

The architecture of Shinken adheres to the Unix philosophy of "one tool, one task."

Each component in Shinken is designed to fulfill a specific role and operates independently,

communicating with other components through standardized interfaces. Shinken utilizes an

HTTP backend, which simplifies the creation of highly available and distributed monitoring

architectures. In summary, Shinken's architecture follows:

• Shinken gets data IN: passively, actively and Networked API

• Shinken acts on the data: Correlation, Event suppression, Event handlers, Adding

new poller daemons, and Runtime interaction

• Shinken gets data OUT: Networked API, Notifications, Logging, Web/Mobile

Frontend (via API and Native WebUI), and Metrics databases

• Shinken manages configurations: Discovery manager SkonfUI, Multi-level discovery

engine, Configuration Packs (commands, config templates, graph templates, etc.),

and Text file management via configuration engines (cfengine, chef, puppet, salt)

4.4 Functionality analysis

 Table 7 provides key features comparison between ElastAlert, Alertmanager, and

Shinken.

Tables 7: The features comparison between ElastAlert, Alertmanager, and Shinken.
Program ElastAlert Alertmanager Shinken

Monitoring ✔ - ✔

Alerting ✔ ✔ ✔

Integration Options ✔ ✔ ✔

Scalability ✔ ✔ ✔

Community Support ✔ ✔ ✔

Centralized Management - ✔ ✔

Signal Alerting ✔ ✔ ✔

Rule-based Alerts ✔ ✔ ✔

Real-time Notifications ✔ ✔ ✔

Multiple Notification Channels ✔ ✔ ✔

Customizable Alerts ✔ ✔ ✔

Scheduled Alerts ✔ ✔ ✔

 72

Alert Escalation ✔ ✔ ✔

Integration Options ✔ ✔ ✔

Open Source ✔ ✔ ✔

Community Support ✔ ✔ ✔

Alert types

Command, Email, JIRA,

OpsGenie, SNS, HipChat,

Slack,Mattermost,

Telegram, GoogleChat,

PagerDuty,PagerTree,Exote

l,Debug, Stomp,

theHive,HTTP POST,

Alerter,Line Notify,Zabbix

Email, Webhook,

PagerDuty, Slack,

OpsGenie, VictorOps,

Pushover, Telegram,

Discord, Microsoft Teams,

Talk, WeChat, Hangouts,

Line, Threema, Gitter, IRC,

Mattermost, Rocket.Chat,

SMS

Email, JIRA, Slack,

OpsGenie, Telegram, AWS

SNS, Microsoft Teams,

PagerDuty, ServiceNow,

Azure Logic Apps,

VictorOps, Webhook,

Splunk, Elasticsearch,

Custom Actions

5. Database Management Systems

5.1 NocoDB

NocoDB [85-86] is a no-code database platform that enables teams to collaborate and

build applications easily using a familiar spreadsheet interface. It can connect to any relational

database and transform those databases into intelligent spreadsheet interfaces. This allows

you to create no-code applications collaboratively with your team. Currently, NocoDB can

work with databases such as MySQL, PostgreSQL, Microsoft SQL Server, SQLite. Additionally,

the NocoDB app store allows you to create business workflows by integrating applications

with Slack, Microsoft Teams, Discord, Twilio, WhatsApp, Email, and third-party APIs. It also

Figure 37: NocoDB Dashboard

 73

provides programmatic access via APIs for you to create integrations with Zapier/Integromat

and custom applications (as shown in Figure. 37). The following are the lists of NocoDB main

features.

• Database Creation: Create databases using popular SQL databases such as MySQL,

PostgreSQL, and SQLite. Additionally, it also supports NoSQL databases like

MongoDB.

• Data Structure Design: You can design the structure of your database using a drag-

and-drop interface. You can define tables, establish relationships between tables,

and specify various field types such as text, number, date, file, and more.

• Data Input and Management: Provides a user-friendly form builder to create

custom input forms for data entry. It allows you to easily add, edit, and delete

records.

• Multiple View Formats: Supports different views of your data, including grid view,

gallery view, form view, and kanban view, among others. These views determine

how your database is displayed.

• View Permissions: Can define different permissions for views in NocoDB.

Collaborative views allow multiple users to work together on the same view, while

locked views restrict access to only specified users or roles.

• Database/View Sharing: Can share your databases or views in NocoDB publicly or

privately with password protection. This gives you control over who can access

and view your database application.

• Various Cell Types: Offers a variety of cell types for different data fields, such as

ID, LinkToAnotherRecord, Lookup, Rollup, Single Line Text, and more.

• Role-based Access Control: Provides fine-grained access control at different

levels. You can assign roles to users and define their access privileges. This allows

you to authorize or restrict access to different features and data.

• App Store for Workflow Automation: NocoDB has an app store that offers

integration with other systems. It falls into three main categories:

o Chat : Slack, Discord, Mattermost, and etc

o Email : AWS SES, SMTP, MailerSend, and etc

o Storage : AWS S3, Google Cloud Storage, Minio, and etc

 74

• Programmatic Access: NocoDB allows access through programs using its REST API.

You can use these APIs to perform actions and interact with your NocoDB

application programmatically. Additionally, NocoDB provides SDKs for system

integration and development purposes.

 75

References
[1] S. Kowtha, L. A. Nolan and R. A. Daley, "Cyber security operations center characterization model and

analysis," 2012 IEEE Conference on Technologies for Homeland Security (HST), Waltham, MA, USA, 2012,

pp. 470-475, doi: 10.1109/THS.2012.6459894.

[2] M. Vielberth, F. Böhm, I. Fichtinger and G. Pernul, "Security Operations Center: A Systematic Study and

Open Challenges," in IEEE Access, vol. 8, pp. 227756-227779, 2020, doi: 10.1109/ACCESS.2020.3045514.

[3] N. Miloslavskaya, "Security Operations Centers for Information Security Incident Management," 2016

IEEE 4th International Conference on Future Internet of Things and Cloud (FiCloud), Vienna, Austria, 2016,

pp. 131-136, doi: 10.1109/FiCloud.2016.26.

[4] A. Perera, S. Rathnayaka, N. D. Perera, W. W. Madushanka and A. N. Senarathne, "The Next Gen Security

Operation Center," 2021 6th International Conference for Convergence in Technology (I2CT), Maharashtra,

India, 2021, pp. 1-9, doi: 10.1109/I2CT51068.2021.9418136.

[5] F. Ahmed, U. Jahangir, H. Rahim, K. Ali and D. -e. -S. Agha, "Centralized Log Management Using

Elasticsearch, Logstash and Kibana," 2020 International Conference on Information Science and

Communication Technology (ICISCT), Karachi, Pakistan, 2020, pp. 1-7, doi:

10.1109/ICISCT49550.2020.9080053.

[6] V. D. Kumar, R. R. Shah and A. Philip, "Centralized log management for pepper," 2011 IEEE Third

International Conference on Cloud Computing Technology and Science, Athens, Greece, 2011, pp. 1-3,

doi: 10.1109/CloudCom.2011.128.

[7] Fluentd. "Output plugin overview." Fluentd documentation. [Online]. Available:

https://docs.fluentd.org/output. [Accessed: Feb 22, 2023].

[8] Fluent Bit. "Fluentd and Fluent Bit." [Online]. Available: https://docs.fluentbit.io/manual/about/fluentd-

and-fluent-bit. [Accessed: Jun 1, 2023].

[9] Graylog. "Planning Your Deployment." [Online]. Available: https://go2docs.graylog.org/5-

0/planning_your_deployment/planning_your_deployment.html. [Accessed: Feb. 19, 2023].

[10] Apache Kafka. "Documentation." Apache Kafka, 2019. [Online]. Available:

https://kafka.apache.org/documentation/. [Accessed: Feb 20, 2023].

[11]

 IBM Cloud Architecture. (n.d.). Kafka Overview. Retrieved February 23, 2023, from https://ibm-cloud-

architecture.github.io/refarch-eda/technology/kafka-overview/

[12] Cloudera, Inc. "Apache Kafka - Overview." Hortonworks Data Platform, version 2.6.1. [Online].

Available: https://docs.cloudera.com/HDPDocuments/HDP2/HDP-2.6.1/bk_kafka-component-

guide/content/ch_overview_kafka.html. [Accessed: Feb 20, 2023].

[13] R. Singh, "Getting Started with rsyslog in Linux," GeeksforGeeks, 17 March 2021. [Online]. Available:

https://www.geeksforgeeks.org/getting-started-with-rsyslog-in-linux/. [Accessed: 22 February 2023].

[14] Rainer Gerhards. (2021). rsyslog Architecture [Image], Available: https://www.rsyslog.com/. [Accessed:

Feb 19, 2023].

 76

[15] J. Partain, "Rsyslog Plugin Overview," [Online]. Available: https://www.rsyslog.com/plugin-overview/.

[Accessed: Feb 20, 2023].

[16] Elastic Stack, “Welcome to Elastic Docs”, [Online]. Available: https://www.elastic.co/elastic-stack/.

[Accessed: Feb. 28, 2023].

[17] M. A. Fathahillah, "An Overview on Elasticsearch and its Usage," Towards Data Science, 12 September

2021. [Online]. Available: https://towardsdatascience.com/an-overview-on-elasticsearch-and-its-

usage-e26df1d1d24a. [Accessed: Feb 20, 2023].

[18] A. Verma, "ELK (Elasticsearch, Logstash, Kibana) Conceptual Tutorial for Beginners," Medium, 19

October 2020. [Online]. Available: https://faun.pub/elk-elasticsearch-logstash-kibana-conceptual-

tutorial-for-beginners-2a7a827305b8. [Accessed: Feb 19, 2023].

[19] DBI services. "Elastic (ELK) Stack: Elasticsearch Terminologies". dbi services Blog, 15 June 2018.

[Online]. Available: https://www.dbi-services.com/blog/elastic-elk-stack-elasticsearch-terminologies/.

[Accessed: Feb 18, 2023].

[20] Elastic Beats, [Online]. Available: https://www.objectrocket.com/resource/what-are-elasticsearch-

beats/. [Accessed: Feb 27, 2023]

[21] Elastic Logstash, [Online]. Available: https://www.elastic.co/logstash/. [Accessed: Feb 27, 2023]

[22] Elastic. (n.d.). Beats reference. Retrieved February 24, 2023, from

https://www.elastic.co/guide/en/beats/libbeat/current/beats-reference.html

[23] M. Amer, "Logstash for Synchronize Elasticsearch with DBs," Medium, 28 June 2020. [Online].

Available: https://mohaamer5.medium.com/logstash-for-synchronize-elasticsearch-with-dbs-

e5dda7cea930. [Accessed: 20 February 2023].

[24] Kibana, [Online]. Available: https://www.elastic.co/kibana/. [Accessed: Mar 1, 2023]

[25] Threat Intelligence Platform, [Online]. Available:

https://en.wikipedia.org/wiki/Threat_Intelligence_Platform. [Accessed: Mar 4, 2023]

[26] Tim Wilson, “Threat Intelligence Platform: The Next Must-Have for Harried Security Operations Teams,

Jun 2015. [Online]. Available: https://www.darkreading.com/attacks-breaches/threat-intelligence-

platforms-the-next-must-have-for-harried-security-operations-teams. [Accessed: Mar 04, 2023].

[27] M. Senftleben and A. Willemsen, "Introduction to Information Sharing with MISP," MISP Project,

[Online]. Available: https://www.misp-project.org/documentation. [Accessed: Mar 18, 2023].

[28] S. Zeb, M. Shahid, R. Ahmad, N. Javaid, "MISP vs. OpenCTI: A Comparative Study of Cyber Threat

Intelligence Sharing and Analysis Platforms," Computers & Security, vol. 110, p. 102310, Jan. 2022.

[29] CIRCL (Computer Incident Response Center Luxembourg). (n.d.). MISP - Malware Information Sharing

Platform & Threat Sharing. In MISP (Malware Information Sharing Platform) User Guide (p. 64),

[Online]. Available: https://www.circl.lu/doc/misp/book.pdf. [Accessed: Mar 19, 2023].

[30] A. Al Jallad, I. Aloulou, and M. Samet, "A Comparative Study of OpenCTI and MISP for Cyber Threat

Intelligence Sharing and Analysis," Journal of Cybersecurity and Privacy, vol. 1, no. 1, pp. 1-16, Dec.

2021.

 77

[31] Filigran. (n.d.). Open CTI Architecture. [Online]. Available: https://filigran.notion.site/Architecture-

5ce8241eac7e4e24906249e9595314cd [Accessed: Mar 20, 2023].

[32] ANSSI, “OpenCTI – The Open Source Solution for Processing and Sharing Threat intelligence

Knowledge”, [Online]. Available: https://www.ssi.gouv.fr/actualite/opencti-the-open-source-solution-

for-processing-and-sharing-threat-intelligence-knowledge/ [Accessed: Apr 7, 2023].

[33] MITRE ATT&CK. [Online]. Available: https://attack.mitre.org/ [Accessed: Apr 7, 2023].

[34] Structured Threat Information Expression (STIX). [Online]. Available: https://oasis-open.github.io/cti-

documentation/ [Accessed: Apr 7, 2023].

[35] GraphQL, “A Query Language for your API”. [Online]. Available: https://graphql.org/ [Accessed: Apr 5,

2023].

[36] TheHive. [Online]. Available: https://github.com/TheHive-Project/TheHive [Accessed: Apr 5, 2023].

[37] MISP, “Threat Intelligence Sharing Platform”. [Online]. Available: https://github.com/MISP/MISP

[Accessed: Apr 5, 2023].

[38] Alves, M. M. (2021). OpenCTI as Threat Intelligence Platform for Security Operation Centers. In

Proceedings of the 16th International Conference on Evaluation of Novel Approaches to Software

Engineering (pp. 679-686).

[39] Filigran. (n.d.). OpenCTI. Data visualization is a feature of OpenCTI, a cyber threat intelligence platform

offered by Filigran. [Online]. Available: https://www.filigran.io/en/products/opencti/. [Accessed: Mar

19, 2023].

[40] CRITs. (n.d.). What Is CRITs? . [Online]. Available: https://github.com/crits/crits. [Accessed: Mar 21,

2023].

[41] Schrottner, J., et al. (2021). The Landscape of Cyber Threat Intelligence Platforms: An Evaluation

Framework for Researchers and Practitioners. 10th International Conference on Decision Support

System Technology, ICDSST 2021. [Online]. Available:

https://diglib.uibk.ac.at/ulbtirolhs/download/pdf/6676638?originalFilename=true. [Accessed: Mar 19,

2023].

[42] CRITs. [Online]. Available: https://crits.github.io/ [Accessed: Apr 7, 2023].

[43] Cheng, F., Li, W., Li, W., Li, Y., Li, H., & Li, Y. (2021). A Risk Management System for Hotels Based on

Threat Intelligence. Journal of Ambient Intelligence and Humanized Computing, 11(12), 5521-5532.

[44] Center for Internet Security. (2021). Collective Intelligence Framework (CIF). [Online]. Available:

https://csirtgadgets.com/collective-intelligence-framework/ [Accessed: Mar 22, 2023].

[45] Greg Farnham, “Tools and Standards for Cyber Threat Intelligence Projects”, Jun 2012. Online].

Available: https://www.giac.org/paper/gcpm/134/tools-standards-cyber-threat-intelligence-

projects/108367 [Accessed: Apr 10, 2023].

[46] Extensible Markup Language (XML). [Online]. Available: https://www.w3.org/XML/ [Accessed: Apr 7,

2023].

[47] JSON. [Online]. Available: https://www.json.org/json-en.html [Accessed: Apr 7, 2023].

 78

[48] CSV – Common Separated Values. [Online]. Available: https://datahub.io/docs/data-packages/csv

[Accessed: Apr 7, 2023].

[49] Melo e Silva, A. de, Gondim, J.J.C., Oliveira Albuquerque, R. de, Villalba, L.J.G.: A Methodology to

Evaluate Standards and Platforms within Cyber Threat Intelligence. Future Internet, 1-23 (2020)

[50] Tounsi, W., Rais, H.: A survey on technical threat intelligence in the age of sophisticated cyber attacks.

In: Computers & Security 72, 212-233 (2018)

[51] Staiger, T. (2021). Cyber Threat Intelligence Sharing Platforms: A Comprehensive Analysis of Software

Vendors and Research Perspectives. Master's thesis, University of Innsbruck.

[52] Lodi, M. (2023). IntelOwl. [Online]. Available: https://intelowl.readthedocs.io/ [Accessed: Mar 20,

2023].

[53] Intel Owl. (2021, September 13). Intel Owl Release v3.0.0. The Honeynet Project. [Online]. Available:

https://www.honeynet.org/2021/09/13/intel-owl-release-v3-0-0/. [Accessed: Mar 21, 2023]

[54] F. Sabahi and A. Movaghar, "Intrusion Detection: A Survey," 2008 Third International Conference on

Systems and Networks Communications, Sliema, Malta, 2008, pp. 23-26, doi: 10.1109/ICSNC.2008.44.

[55] Palo Alto Networks, “What is an Intrusion Detection System?”, Mar 2022. [Online]. Available:

https://www.paloaltonetworks.com/cyberpedia/what-is-an-intrusion-detection-system-ids [Accessed:

May 15, 2023].

[56] Waleed, A., Jamali, A. F., & Masood, A. (2022). Which open-source IDS? Snort, Suricata or Zeek.

Computer Networks, 213, 109116.

[57] The Snort Project. (2020, April 8). Snort Users Manual (Version 2.9.16). [Online]. Available:
https://snortorgite.s3.amazonaws.com/production/document_files/files/000/000/249/original/snort_m

anual.pdf. [Accessed: Mar 29, 2023].

[58] Gavrilović, N., Ćirić, V., & Lozo, N. (2022). Snort IDS System Visualization Interface for Alert Analysis.

Serbian Journal of Electrical Engineering, 19(1), 67-78. DOI: https://doi.org/10.2298/SJEE2201067G.

[59] Shuai, L., & Li, S. (2021). Performance optimization of Snort based on DPDK and Hyperscan. Procedia

Computer Science, 183, 837-843. doi: 10.1016/j.procs.2021.02.172

[60] Abdulrezzak, S., & Sabir, F. A. (2023). Enhancing Intrusion Prevention in Snort System. In Proceedings

of the 2023 15th International Conference on Developments in eSystems Engineering (DeSE) (pp. 1-

5). IEEE. DOI: 10.1109/DESE58274.2023.10099757

[61] OISF, "Suricata User Guide Release 5.0.3." [Online]. Available:

https://suricata.readthedocs.io/_/downloads/en/suricata-5.0.3/pdf/. [Accessed: April 7, 2023].

[62] I. Ghafir, V. Prenosil, J. Svoboda, & M. Hammoudeh, “A survey on network security monitoring

systems,” 2016 IEEE 4th International Conference on Future Internet of Things and Cloud Workshops

(FiCloudW).

[63] Fekolkin, R. (2015). Intrusion Detection and Prevention Systems: Overview of Snort and Suricata.

Internet Security, A7011N. Luleå University of Technology.

 79

[64] Alves, A. F. P. (2020). Integrating an Intrusion Detection System with Heterogeneous IoT Endpoint

Devices (Thesis). Universidade do Minho, Escola de Engenharia. Retrieved from. DOI:

10.13140/RG.2.2.21711.92328.

[65] Fadhilah, D., & Marzuki, M. I. (2020). Performance Analysis of IDS Snort and IDS Suricata with Many-

Core Processor in Virtual Machines Against DoS/DDoS Attacks. In Authorized licensed use limited to:

National Science & Technology Development Agency. In 2020 11th International Conference on

Computing, Communication and Networking Technologies (ICCCNT) (pp. 78-1-7281-7450).

[66] Hua, Q., Yu, S.-Y., & Asghar, M. R. (2020). Analysing performance issues of open-source intrusion

detection systems in high-speed networks. Journal of Information Security and Applications, 51,

102426. DOI: 10.1016/j.jisa.2019.102426

[67] Zeek, 2022. “The zeek network security monitor”. [Online]. Available: https://zeek.org/. [Accessed:

April 25, 2023].

[68] The Cyber Center for Security and Analytics. (2020). Zeek Intrusion Detection Series: Lab 1 -

Introduction to the Capabilities of Zeek. Document Version: 03-13-2020.

[69] Muhammad, A.R., Sukarno, P., Wardana, A.A. (2023). Integrated Security Information and Event

Management (SIEM) with Intrusion Detection System (IDS) for Live Analysis based on Machine

Learning. Procedia Computer Science, 217, 1406-1415.

[70] Elvira Nassirova, “Data Visualization Dashboard: Benefits, Types, and Examples”, Jan 2023. [Online].

Available: https://blog.coupler.io/what-is-data-visualization-dashboard/ [Accessed: May 18, 2023].

[71] Sameer Bhale, “Dashboard Data Visualization: Benefits, Types, and Examples”, Feb 2023. [Online].

Available: https://www.knowledgehut.com/blog/business-intelligence-and-visualization/dashboard-

data-visualization [Accessed: May 18, 2023].

[72] Apache Superset. (2021). Introduction to Apache Superset - Apache Superset documentation.

[Online]. Available: https://superset.apache.org/docs/intro/. [Accessed: Mar 21, 2023].

[73] Grafana. (n.d.). Dashboards. Retrieved March 29, 2023, [Online]. Available:

https://grafana.com/docs/grafana/latest/dashboards/ [Accessed: Mar 21, 2023].

[74] Grafana documentation. (n.d.). Demo Dashboards. [Online]. Available:

https://play.grafana.org/d/000000012/grafana-play-home?orgId=1. [Accessed: Mar 21, 2023].

[75] Leppänen, T. (2021). Implementation of Grafana monitoring tool for containerized microservices

(Bachelor's thesis, Turku University of Applied Sciences). [Online]. Available:

https://www.theseus.fi/bitstream/handle/10024/512860/Turkuamk_Bachelors_Thesis_Leppanen_Tiia.

pdf?sequence=2&isAllowed=y . [Accessed: Mar 21, 2023].

[76] Metabase. (n.d.). Tour of Metabase. Retrieved from https://www.metabase.com/learn/getting-

started/tour-of-metabase#how-to-query-and-visualize-your-data

[77] Elasticsearch BV. (2021). Kibana: Introduction. [Online]. Available:

https://www.elastic.co/guide/en/kibana/current/introduction.html. [Accessed: Mar 24, 2023].

[78] OpenSearch contributors. (2023). Introduction to OpenSearch [Documentation]. Retrieved from

https://opensearch.org/docs/latest/. [Accessed: Jun 1, 2023].

 80

[79] Opster Expert Team - Gustavo. "OpenSearch Observability Visualizations: How to Use Notebooks and

Operational Panels." [Online]. Available: https://opster.com/guides/opensearch/opensearch-

basics/opensearch-dashboards-visualizations-notebooks-operational/. Updated: Oct 30, 2022.

[Accessed: June 1, 2023].

[80] Chatzichrysou, D. (2019). Evaluate ElastAlert for IT-DB use cases. CERN IT Department – Database

Group – Infrastructure & Automation. Supervisors: Tsouvelekakis, A., & Coterillo Coz, I.

[81] Long, Q. (2019). ElastAlert Documentation Release 0.0.1. [Online]. Available:

https://elastalert.readthedocs.io/_/downloads/en/latest/pdf/.[Accessed: May 7, 2023].

[82] Pivotto, J. (2019, November 8). Improved alerting with Prometheus and Alertmanager [Conference

presentation]. PromCon Munich. [Online]. Available: https://promcon.io/2019-

munich/slides/improved-alerting-with-prometheus-and-alertmanager.pdf. [Accessed: May 1, 2023].

[83] Dubey, A. (2018, March 25). AlertManager Integration with Prometheus. [Online]. Available:

https://iamabhishek-dubey.medium.com/alertmanager-integration-in-prometheus-197e03bfabdf.

[Accessed: May 2, 2023].

[84] Shinken Documentation. (Release 2.4). Shinken Team. August 14, 2015. [Online]. Available:

https://readthedocs.org/projects/shinken/downloads/pdf/latest/. [Accessed: May 7, 2023].

[85] NocoDB Documentation. (0.108.1: Bug Fix Release) [Online]. Available: https://docs.nocodb.com/.

[Accessed: June 1, 2023].

[86] Menor, D. (May 30, 2022). Best Open-Source Airtable Alternatives. [Online]. Available:

https://hashdork.com/best-open-source-airtable-alternatives/.[Accessed: June 1, 2023].

