（APNIC Project）

Developing a Collaborative BGP Routing Analyzing and Diagnosing Platform

－－The 3rd Technical Committee Meeting

August 3， 2022

Outline

－Project Progress
－The Updates of BGP Session Establishment with 9 Partners
－The Improvement of Routing Path Search Function
－User Registration，Subscription，and Email Alarm
－Next month plan
－Review overall work plan
－Comments／Suggestions

APNIC
FOUNDATION

BGP Route Information Sharing

We have established BGP session with 9 partners. Data can be accessed at https://bgp.cgtf.net And we are discussing detailed scheme with other partners Maybe multi sessions are needed.

AS 7660(APAN-JP)
AS 63961(BDREN)
AS 4538(CERNET)
AS 3662(HARNET)
AS 17579(KREONET)
AS 38229(LEARN)
AS 24514(MYREN)
AS 23855(SINGAREN)
AS 3836(ThaiSARN)

Index of /ribs/2022/07

Name	Last modified	Size Description	
? ${ }^{\text {r }}$ rib.20220730.0600.mrt.bz2	2022-07-30 06:00	13M	
? $?$ rib.20220730.0800.mrt.bz2	2022-07-30 08:00	13M	
? $?$ rib.20220730.1000.mrt.bz2	2022-07-30 10:00	13M	
? rib.20220730.1200.mrt.bz2	2022-07-30 12:00	13M	
? 7 rib.20220730.1400.mrt.bz2	2022-07-30 14:00	13M	
? 7 rib.20220730.1600.mrt.bz2	2022-07-30 16:00	13M	
? $?$ rib.20220730.1800.mrt.bz2	2022-07-30 18:00	13M	
? rib.20220730.2000.mrt.bz2	2022-07-30 20:00	13M	
? $?$ rib.20220730.2200.mrt.bz2	2022-07-30 22:00	13M	
? ${ }^{\text {f }}$ rib.20220731.0000.mrt.bz2	2022-07-31 00:00	13M	
? $?$ rib.20220731.0200.mrt.bz2	2022-07-31 02:00	13M	
[? rib.20220731.0400.mrt.bz2	2022-07-31 04:00	13M	
? 7 rib.20220731.0600.mrt.bz2	2022-07-31 06:00	13M	
? $?$ rib.20220731.0800.mrt.bz2	2022-07-31 08:00	13M	NiC
? $?$ rib.20220731.1000.mrt.bz2	2022-07-31 10:00	13M	DATION

Routing Path Search

Group Prefixes with the same routing path .
Return paths of all sub networks and super networks of the input prefix.

Register and Subscribe AS

Send Alarm Email to Subscriber

Alarm！Announced prefixes changed
sec
发给 ac a
发珄人：secssec＠cgtf．net＞
收珄人：acq＜acq＠tsinghua．edu．cn＞
时间： 2022 年8月3日（周三）14：26
大小： 3 KB
\＃ASN 4538 \＃
－101．4．118．0／24
－121．194．0．0／20
－203．91．120．0／21
－218．200．250．198／32

DashBoard --Basic Info

Next Month Plan

－Monitor prefix hijacking，and send alarm message to the victim
－Improve routing search function
－Research topic

Discussion About Routing Path Search

1．Search routing path from an AS to a prefix
2．Search routing path from a prefix to a prefix（2 equals 1）
3．Search routing path from an AS to an AS（split to 1）
4．Search routing path to an AS（split to 3）
5．Report routing path changing between 2 dates

How to Get Routing Path

Research Topic

Evaluating and Improving Regional Network Robustness from AS TOPO Perspective

$1^{\text {st }}$ Given Name Surname dept．name of organization（of Aff．） name of organization（of Aff．） City，Country
email address or ORCID

$4^{\text {th }}$ Given Name Surname
dept．name of organization（of Aff．）
name of organization（of Aff．）
City，Country
email address or ORCID
$2^{\text {nd }}$ Given Name Surname dept．name of organization（of Aff．） name of organization（of Aff．） City，Country email address or ORCID
$5^{\text {th }}$ Given Name Surname dept．name of organization（of Aff．） name of organization（of Aff．）

City，Country email address or ORCID
$3^{\text {rd }}$ Given Name Surname dept．name of organization（of Aff．） name of organization（of Aff．） City，Country
email address or ORCID
$6^{\text {th }}$ Given Name Surname
dept．name of organization（of Aff．） name of organization（of Aff．）

City，Country
email address or ORCID

Abstract－Currently，national and regional networks are sub－ ject to various security attacks and threats，including various
types of malicious behaviors and specific natural disasters．This paper borrows the quantitative ranking idea from the fields of economy and society and proposes a ranking method for evaluating regional resilience．A large－scale simulation was made and the sampling data were acquired from each AS and region．
A significance tester that measures the impact of events from A significance tester that measures the impact of events from
the overall level and variance aspect was also implemented．To improve a region＇s robustness，this paper proposes a greedy algorithm to optimize the resilience of regions by increasing key links among AS．This paper selects the AS topology of
50 50 countries／regions for research and ranking，evaluating the topology robustness from connectivity，user，and domain per－
spective，clustering the results，and searching for optimal links to improve the network resilience．Experimental results have shown that the resilience of regional networks can be greatly improved by slightly increasing the number of connections，which demonstrates the effectiveness of the optimization method．
Index Terms－Autonomous System（AS），network resilience， network security

Is there any difference in the resilience of each region，and if so，how big is the difference；what is the key weak topology hat causes such a gap；how should the region optimize the topology to improve its own resilience？We conducted com－ prehensive assessment of the resilience of regional network to Assess resilience ins and region：To address the problems， e propsed a stistica med to avaluate the pilience of we proposed a sum se region under attack．We simulated a damage event according caused by the caused by the sin． omparative analysis of regional resilience，we implemented ignificance tester using the Kruskal－Wallis test［21］method to make a comparison among regions and measure the impac of regional attack events from the overall level and variance aspect，respectively．To get the ranking and clustering results of fifty regions，we clustered the regional resilience at the overal level and variance aspect．

$c 2 p[n]$ ，

$c 2 p[0 / n] \& p 2 p[0 / 1] \& p 2 c[0 / n]$ ．
$\imath>1 . r[n]$ means there are n consecutive connections e r relationship in the routing path，$r[0 / n]$ means there or n consecutive connections with the r relationship in ting path，$r[0 / 1]$ means there exists 0 or 1 connection $z r$ relationship in the routing path，and the symbol \＆ s that $c 2 p[0 / n], p 2 p[0 / 1]$ ，and $p 2 c[0 / n]$ are adjacen outing path．
idering the valley－free principle，the following form ing path relationship will not occur：$p 2 c[1 / n]$ \＆ $l / n] \& c 2 p[1 / n]$ ，where $n>1$ ．Fig． 3 shows the insition diagram．

（a）calculating the node pairs that can＇t communicate

（b）greedy search
Fig．4．Searching the optimal link

Based on the routing tree of each node，we compare the nodes on the routing tree before and after the weak group is destroyed，and obtain the node pairs that cannot communicate after the weak group is destroyed，as shown in Fig．4（a）．The weak group $A S_{W}$ may consist of multiple AS nodes and links． When nodes and links in $A S_{W}$ are destroyed，$A S_{i}$ and $A S_{j}$ can＇t communicate，neither can $A S_{k}$ and $A S_{l}$ ．
We store pairs of nodes that cannot communicate according to certain rules．When the nodes are AS，the records are sorted according to the number of their customers，and the AS nodes with a higher number of customers are recorded on the left； when the nodes are region，the records are sorted according to the number of ASes in the region，and the regions with a

莦幕大萦
Welcome partners to join in this work

	Detailed Technical Committee Work Plan	Tentative Timeline
Timeline	Discussion on Timeline	May
Project Web Site	Requirements/Design	May
	Partner's information	May
BGP Routing Information Sharing	Requirements/Design(email, slack)	Document info (How to implement, what partners need to do)

Todo List

	Detailed Technical Committee Work Plan	Todo
BGP Routing Information Sharing	Document info（How to implement，what partners need to do） Implement the peering（meeting，email， slack）	Executive Team ：send manual to partners， discuss with each partner，and implement the peering． Partners：setup peering．
BGP Platform	Iterative feedback \＆development	Partners：Test new services Executive Team：Software Development
Looking Glass Platform	Document info（How to implement，what partners need to do）	Executive Team ：send manual to partners， discuss with each partner，and implement the connection．
	Implement the connection（meeting，email， Partners：setup connection．	
slack）		

Comments／Suggestions

－？？

