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capacity across the link. Our wider project aims to build a simulator capable of 
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Background and Justification 
Remote locations such as many Pacific Islands face a significant challenge when it comes to getting Internet 
connectivity: Laying submarine fibre cables [1] to such islands is expensive because of the huge distances (often 
many hundreds of kilometres) and depths involved. Small populations combined with huge distances and often 
low GDP make for bad business cases for the upfront cost of such cables. The only alternative at present are 
satellite links, with a number of providers of geostationary (GEO) and medium earth orbit (MEO) solutions vying 
for business. While the entry price for satellite solutions is lower, their relative cost for capacity provisioned is 
higher, typically in the hundreds of US dollars per Megabit per second (Mbps) of capacity per months.  

Much to the chagrin of Internet Service Providers (ISPs) and users in such locations, such satellite links often fail 
to reach their nominal capacity by a considerable margin. Meanwhile, their users report slow download speeds. 
The blame for this lies neither with the ISPs nor with the satellite providers, however, but with the dynamic 
behaviour of the Internet’s Transmission Control Protocol (TCP) [2][3]. TCP carries the bulk of the Internet’s file 
transfers, including web traffic, software downloads and e-mail, making it an essential part of any Internet 
connection. Unfortunately, TCP was not designed with satellite links in mind. 

What makes satellite links special? Two factors: Firstly, latency - the time it takes for a transmission to get from 
the sender to the receiver. In the case of a TCP data packet travelling via a GEO satellite, the latency is at least 
250 ms (and often more if the “world” side of the connection is not located close to the satellite gateway). On a 
MEO satellite such as those operated by O3b Networks [4], this is around 190 ms lower, but still comparable to 
the latency on a fibre cable between Australia and the USA. The round-trip-time (RTT), the sum of the two one-
way latencies in a TCP connection, determines the timeliness of the feedback that a TCP sender gets on its 
transmissions.  

The second factor is capacity: At ISP level, cable-based communication now generally happens on networks 
using Gigabit Ethernet or faster. In comparison, some islands in the Pacific have to make do with inbound 
satellite capacities of 16 Mbps - the equivalent of an ADSL-based home Internet connection in New Zealand, or 
about 60 times below the capacity of the networks connected at either end of the satellite link. 

TCP sends data in the form of packets - snippets of data - and keeps a running tab of their successful delivery 
by counting the bytes they contain and “crossing them off the list” when a TCP sender receives an 
acknowledgement (ACK) packet from the receiver. In order to make good use of the capacity offered by links, 
TCP needs to be able to have multiple data packets in transit to the receiver before it can expect the ACK for the 
first of these packets to arrive back. The number of packets that a sender should transmit before expecting an 
ACK is determined by the bandwidth-delay product of the connection between the sender and receiver. The 
delay in this product is the RTT, which is relatively easy to determine with reasonable accuracy. The bandwidth, 
however, is the available capacity on the links between sender and receiver that is not already taken up by other 
traffic. In the case of our satellite links, which are always shared between multiple connections, the million dollar 
question in this respect is: “How much capacity is left and how many data packets should I send?”    

TCP is in principle designed to maximise the use of link capacity that it shares with other TCP connections by 
making this number adaptive [5][6]. This feature, known as congestion control, relies on the ACKs from the 
receiver to inform the sender whether its packets arrive or have fallen victim to queue drops as a result of 
congestion along the way.  

Crudely speaking, the sender allows more packets to be in transit as long as it receives a contiguous sequence 
of ACKs, and curtails the allowable number in transit exponentially (exponential backoff) if ACKs become 
overdue. The number of packets that a sender will transmit before waiting for an ACK is known as the sender’s 
congestion window. Connections that have a large bandwidth-delay product available to them thus benefit from 
a large congestion window, whereas connections with small bandwidth-delay products require small congestion 
windows. As large congestion windows carry the risk of causing congestion, TCP tends to err on the side of 
caution: It starts with a small congestion window (typically 10 packets) and then increases it as ACKs arrive. 
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When ACKs fail to arrive, TCP detects packet loss, and decreases the congestion window exponentially. A 
number of algorithms exist for this purpose. 

Enter our satellite links: We now have a large number of TCP senders trying to have just the right number of 
packets in transit, but ACKs may not return for hundreds of milliseconds. Moreover, along the way, we have the 
capacity bottleneck of the satellite link. So what happens? Our TCP senders accelerate as they receive their 
ACKs from their earlier transmissions at lower packet rates. This increase in traffic causes the queue at the input 
to the satellite link bottleneck to grow, and eventually overflow. The senders now lose packets there, but still 
receive ACKs for older packets back from the far end. By the time the ACKs stop arriving, the senders have lost 
a lot of packets, causing them to radically reduce the number of packets in transit. The queue clears and the 
satellite link sits idle for a while, until the cycle repeats.  

This phenomenon, called TCP queue oscillation, has been known for the best part of three decades [7], but has 
not been solved. It accounts for both the link underutilisation reported by the ISPs, and the slow download 
speeds reported by their users. In effect, it means that Pacific Island ISPs are paying for satellite capacity they 
cannot use. 

Since TCP’s large worldwide installation base precludes wholesale replacement of the protocol, one needs to 
look for other approaches to a solution. We are often asked whether active queue management techniques such 
as RED [8] or CoDel [9] are the way to go here. Sadly, this is not the case since these techniques also rely on 
feedback affected by the same latency: There are simply no low latency connections on a satellite link.  

So, what works? The classic approach has been to reduce the latency by using performance-enhancing proxies 
(PEPs) [10][11]. PEPs generally split the TCP connection at or near the off-island satellite gateway, effectively 
operating two connections in series, each of which has a lower individual latency than an end-to-end connection. 
However, most comparative literature on PEPs - and there is not much - looks at scenarios where the PEPs 
handle multiple parallel large downloads. This is quite different from the mix in TCP data flows encountered on 
real links in the Pacific, where download range from a few bytes to into the hundreds of megabytes (MB). PEPs 
also suffer from problematic failure modes when the split connections do not terminate cleanly [12]. 

A more recent approach has been to use network codes (or, more generally, error-correcting codes) [13]. While 
forward error-correcting codes (FEC) have long been a staple in space communication, they are generally 
applied on the space segment between the satellite gateways only. In our case, however, the point of loss sits 
literally at the entry point to the FEC encoder - meaning that the protection of the codes does not extend to the 
packets lost there. 

The fundamental idea of coding TCP is to change this, so that the encoding happens before the packets reach 
the input queue to the satellite modem. In principle, this allows all TCP packets to be protected against loss and 
thus lets the senders sustain higher average packet rates. 

In a precursor project funded by ISIF Asia, we investigated the performance of such network coding software 
when used on a small number of individual large TCP transfers on actual satellite links in the Pacific (Rarotonga, 
Niue, Tuvalu, and Aitutaki). The project found that on the links that showed evidence of queue oscillation 
(Rarotonga and Tuvalu), the coded transfers could access some of the unused capacity and achieve goodput 
rates of typically at least twice those of uncoded transfers [14][15][16]. 

As the precursor project used production links that we could not disrupt, there were a number of questions it 
could not answer:  

• How feasible would it be to code all traffic to an island? It was always clear that gains would be restricted 
to the unused capacity less coding overhead, but how much capacity could we claw back? 

• How well would coding work compared to a PEP? Could one combine coding and PEPs? 
• Would other coding schemes offer potentially better performance? 

Because we could not investigate these questions in the islands, we decided to head back to the lab and build a 
simulator that would emulate a Pacific Island ISP, its users, and the TCP senders in the world that they draw 
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data from. We kick-started the project with a number of existing machines, university CAPEX and OPEX, and a 
generous donation from a research account courtesy of Brian Carpenter, who needs no introduction in Internet 
circles. Internet New Zealand came to the party with a grant for further equipment. This is where the story of the 
present project starts. 

     

Project Narrative 

The platform 
At the start of the project, most of the project hardware that we required immediately was in hand:  

• 17 Super Micro servers: 14 servers emulating the “servers of the world” that send data to the “island”, 
three servers to emulate satellite links and provide for an encoder/decoder/PEP/observation point on 
either side of the link. 

• 84 Raspberry Pis to act as clients receiving the data on the “island side” of the simulator. 
• 10 Intel NUC machines to complement the Raspberry Pis. 
• 2 Raspberry Pis to act as special purpose machines on the world & island sides of the simulator. 
• A command and control desktop which doubles as the project’s file storage. 

Most of these had already been configured and installed at the time of application, and we had confirmed via 
baseline experiments that all components “talked” and were able to reach unthrottled capacity across the 
simulator using artificial traffic designed to maximise load and flush out any unexpected issues. A network 
topology of the simulator in its configuration at the time was submitted as part of the interim report.  

In 2017, we were offered a significant capital expenditure injection by the University of Auckland’s Department of 
Computer Science, within which we operate. This allowed us to acquire an additional 15 Super Micro servers 
and another 12 Pis. This opportunity and would not have been available to us had it not been for this ISIF Grant.  

One of the new Super Micros replaces the student desktop used as command, control and storage machine, a 
further 8 boosted our pool of world servers. A further two machines now allow us to separate coding and PEP 
functionality – so we can now run coded PEP traffic, yet investigate which influence each technology has on the 
result. Another two machines with large drives now act as dedicated traffic observers on either side of the link, 
supported by a fleet of five copper taps. The remaining two new Super Micros act as a spare “world server” and 
as a special purpose server, which conducts active measurements and is also the vantage point from which we 
inject UDP traffic into the link. A current topology is attached at the end of this report. 

Our first task in 2016 was to test hardware and software together, and to learn to “drive” the simulator so it would 
yield usable data.  

Learning to drive   
…our own software: 

At the time of application, we had also developed prototype versions of our experiment client and server 
software. This is special software and operates a little different from conventional textbook client/server 
applications: Each physical client runs the client software, which maintains a configurable number of “channels”. 
Each channel runs a loop that opens a TCP connection to a randomly selected server on the “world” side, 
downloads whatever data the server has to offer, gets disconnected, and immediately repeats the process until 
the end of the experiment. The total number of channels across all physical clients gives us a pretty precise 
“knob” with which we can increase or decrease the “demand” on the link. 

The server side acts largely like a normal TCP server, in that it accepts connections from clients and sends them 
data. The special feature here is that it determines the amount of data sent from a configurable distribution. Our 
default distribution is a flow size distribution collected at Bluesky Cook Islands in Rarotonga. This allows us to 
get a realistic flow size mix - and it is a very strongly skewed distribution, too: Its median flow size is a few 



 

Technical report 

 

  

This work has been developed with the support provided by the Information Society Innovation Fund (ISIF Asia) – 2015, licensed under the 
Creative Commons Attribution-ShareAlike 4.0 International. 

 

hundred bytes (read: half the flows are smaller, the rest larger), its mean flow size (total number of bytes in all 
flows divided by the number of flows) almost 100 times larger, and the longest flow is over 800 MB. This had a 
very direct impact on our progress, and for this reason we will return to this topic a little later.     

When testing the software prototype, we noticed that no physical client seemed to be able to handle more than 
around 20 channels. That is, the client would be able to open connections on any number of channels, but only 
the first 20 or so would receive significant amounts of data, and be able to complete and renew their 
connections. Beyond that number, the channels would connect at most a couple of times and receive almost no 
data compared to the others. Mighty strange!  

Moreover, this effect seemed to be independent of platform (NUCs and Pis were similarly affected) and several 
major restructuring attempts (separate processes for each channel, threaded, active sockets serviced in a loop) 
made no difference whatsoever. Twenty or so it was. Problem: With only 94 physical clients, this effectively 
limited our ability to reach our target of being able to deploy well over 2000 channels. We reached out to the 
most experience network hacks we could find - and drew a blank. Even the good people at CAIDA at USCD had 
never seen this happen. 

It then dawned on us that we were doing something rather unusual: Sure, many people had written applications 
that run multiple sockets in parallel. Browsers do, for example. However, these applications do not normally 
replace sockets with new ones after the old ones have completed their task. We eventually traced the problem to 
a quirk in POSIX-based operating systems (read: all common operating systems), which always assign the 
lowest available socket file descriptor when a new socket needs to be create. Unfortunately, they also service 
these file descriptors in ascending order, starting at the bottom. This means that sockets with lower numbered 
file descriptors have their buffers copied with priority. They finish first, and bequeath their file descriptors to the 
next sockets off the production line. As a result, sockets with higher numbered file descriptors never get service. 
We solved the problem by artificially limiting the rate at which the servers write to individual connections - not a 
problem in a satellite context, but it lets us handle 40 channels and more per physical client. 

Lesson learned: Some socket file handles are created more equal than others. 

Learning to drive…a simulated satellite link: 

The next task was to configure the “satellite link”, or more specifically the latencies and capacity constraints we 
needed. A bit of light googling yields any number of recipes as to how one might implement such an “impaired 
link”: The general recommendation is to use Linux tc traffic control with a netem delay qdisc for the latency and 
a token bucket filter of sorts to enforce the satellite’s bandwidth constraint. Sounds easy, and sure enough it 
appears to be that way. Test with ping and you get the expected round-trip time. Test with iperf3 and the 
bandwidth constraint appears spot on. Test with both simultaneously and you get round-trip times that none of 
the buffers involved will explain, and eventually your interfaces block completely. 

Lessons learned after a lot of trial and error: Do not try to chain a token bucket filter and a netem delay on the 
same interface. Ensure that your netem delay is configured with sufficient buffer to allow it to hold the entire 
bandwidth-delay product of your satellite link. 

In order to automate the task of configuring the simulated link (which involves the removal of any previous 
configuration, the configuration of two network interfaces with netem delays and ingress redirects, and of two 
“intermediate function block devices” with token bucket filters), we wrote a bash shell script that we pass link 
bandwidth, queue capacity and a number of other parameters. This script runs whenever we change link 
configuration between experiments and forms part of our results with respect to Objective 2 (Automating 
experiment runs in non-coded configurations) and Objective 3 (Automate experiment runs in coded 
configurations). 

Learning to drive …multiple machines at the same time: 
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The Unix utility we had selected for this purpose was pssh (parallel ssh). This tool allows scripts to open parallel 
secure shell (SSH) connections to multiple machines - just what we needed for the script development part of 
the project! So we happily built an extensive script that would start up the servers, start packet capture on both 
sides of the link, start the clients, run the experiment, backhaul the results from across the simulator to command 
and control server and analyse them there. As part of the analysis, we wrote a script that would automatically 
generate per-client and per-server statistics and check them to ensure that all of the servers and clients 
configured had actually partaken in the experiment and were seen on the link on a regular basis.  

This script alerted us to the fact that some clients seemed to arrive late on the job. In fact, not just randomly late 
but by almost exactly 60 and 120 seconds, respectively. On closer inspection, it turned out that pssh has a 
hardwired limit of 32 connections at a time - any further connections are deferred by a minute in batches of 32. 
Since we could not easily override that limit, we wrote a script that load balances the required number of 
channels across the physical clients and then starts multiple instances of pssh for up to 32 identically configured 
clients each. Problem solved! Lesson learned: Expect the unexpected - not everything is documented. 

Learning to drive …the poltergeists in the simulator away: 

The same analysis script that had alerted us to the pssh problem flagged the intermittent “absence” of a number 
of the “world servers”. We then noticed that these servers would also only respond intermittently to connection 
attempts on the simulator-internal network for the experiment traffic when we tried to contact them via this 
network. As all of the servers also have an interface on the university network, we could check that they were 
indeed operating as intended - they just seemed to take their occasional senior moments on the experiment 
interfaces. 

It did not take long to find the problem: an IP address conflict. We demonstrably had several machines on the 
experiment network that responded to the same IP addresses as the legitimate servers. Moreover, their 
hardware addresses were all issued by Super Micro… but we knew the hardware addresses of our servers - and 
they did not match any of them. The initial hunt for “that idiot grad student or cleaner who must have plugged the 
wrong cable from another machine into our switch” yielded no results. Only our machines were on the switch, 
and so were the offending addresses. Eventually, we only had two machines on the switch, and still an offender 
among them. At this point, we started to suspect that there was more to the Super Micros we had inherited. 
Indeed: Someone on a previous project had activated their embedded IMPI servers - small embedded 
computers that run a little web server with which one can remotely monitor and maintain the main server 
machine.  

These IPMI servers often have their own network connectors. On the Super Micros, they share the same 
physical connector. That someone had set the IPMI’s IP addresses to private IP addresses in the same range 
our servers used, such that the servers became “unresponsive” if an IPMI beat them to an ARP (address 
resolution protocol) response. 

Lesson learned: Never assume that your gear doesn’t have a nice feature just because you didn’t pay for it. 

These and other gremlins out of the way, we could finally proceed to experimentation in September 2016. 

Preparing for uncoded baseline simulations 
Uncoded baseline simulations are not to be confused with our baseline experiments carried out at the time of 
application, whose purpose was to demonstrate that the simulator hardware did not contain any hidden 
performance bottlenecks that would have prevented us from using the hardware for the simulation. The uncoded 
baseline simulations actually use the equipment as intended, i.e., as a satellite simulator, and simulate using the 
full complement of physical clients and servers responding according to our empirical flow size distribution. 

Our goal was now to be able to show under which uncoded scenarios TCP queue oscillation would occur. This 
naturally meant investigating a large number of scenarios, and Objective 2 (Automating experiment runs in non-
coded configurations) was key to our ability to do this efficiently. As the possible combinations of satellite 
capacity, demand and input queue capacity are practically infinite, this required a bit of planning: 
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• We had to select representative scenarios for investigation. We settled on eight different base scenarios: 
GEO links with 8, 16, 32 and 64 Mbps capacity, and MEO links with 32, 64, 160 and 320 Mbps capacity, 
respectively. As the behaviour of a link under load depends on both the input queue capacity and the 
load level, we needed to run experiments for a large number of combinations, guided by literature on 
queue capacity and observations from experiments as we completed them in order to determine 
recommendable queue capacities on which we could then base further experiments.  
 
As a rule of thumb, the larger the queue capacity at the input to the satellite link, the wider the demand 
range a link can handle before TCP queue oscillation slows long transfers down. That is, a large queue 
capacity is good for large TCP downloads. At the same time, a large queue capacity means a potentially 
long queue sojourn time, which impairs real-time protocols such as VoIP. We also needed to determine 
the load levels at which queue oscillation set in, and at which levels standing queues would form in the 
queue buffer. High loads result in high link utilisation, but prevent any sizeable TCP download from 
completing. This involved experimenting with a range of load levels and queue capacities for each link 
scenario.    
 

• Choosing an experiment protocol. This was a relatively complex task, requiring a number of experiments 
in its own right. What exactly did we need/want to observe, and how would we get at these observables? 
We wanted to know: goodput, throughput, loss, but also practical information such as how long a 
download of a given size would take in a certain scenario, and how the input queue would behave during 
the experiment. We would also like to know how many parallel TCP flows operated at any one time, and 
how many flows in total an experiment covered. 
 
As a result, we capture packet data both as the packets enter the first of the three link chain machines 
and as they exit the last. A ping from the world special purpose Pi to its island counterpart at the 
beginning and end of each experiment acts like a referee whistle and lets us synchronise the packet 
traces from both ends of the link. Comparison of the packet traces allows us to determine loss, 
throughput and goodput. We also start a dedicated large download shortly after the beginning of each 
experiment to determine the download time. Last but not least, we send a series of ping packets at short 
intervals. Because of their small size, they are practically always admitted into the input queue, and give 
us an accurate picture of the queue sojourn time.  
 

• Part of choosing the experiment protocol was to determine how long an experiment would run for. With a 
highly skewed flow size distribution, we need to run experiments sufficiently long - especially at low 
loads - to ensure that the experiment contains enough of the rare large flows in order to yield an average 
flow size that resembles that of the distribution we observed in Rarotonga. Think of it this way: Lottery 
wins represent a highly skewed distribution. Small wins are far more probable than large wins. Playing 
Lotto just a few times will usually yield wins below the average win only. Playing Lotto a few million times 
is likely to give us a jackpot or two, and get us closer to the average win. 
 
Running our experiments for very short periods leaves us with results that are possibly not 
representative. Running them for longer periods takes time, especially when may experiments are 
involved to cover a large number of configurations. At a given load level, experiments with higher link 
capacities produce more flows during a given time, and MEO experiments produce more flows than 
GEO experiments. While that means that we can shorten the measurement period for the same degree 
of convergence, the faster links also result in larger trace files and longer analysis times, which largely 
compensates for any gains in the measurement period itself.  
 
In total, we settled on measurement periods of 600 seconds for individual 8 Mbps GEO experiments. At 
the other end of the scale, a 320 Mbps MEO link requires only about 90 seconds (and its results 
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converge much better during that period). In total, however, each experiment took around 20 minutes to 
complete.  

With these design decisions made, we could finally start experimenting. Under Objective 2 and 3, we wrote a 
bash script run-exp.sh. In its present version (14 kB / 460 lines), this script: 

1. Ensures that there are no other experiments running. 
2. Creates a log file directory for the experiment run 
3. Opens the result log file for the run 
4. Records server, link and (where applicable) coding configuration to the log 
5. Tests the status of all machines and links in the simulator before the start of an experiment run. This 

includes invoking a script that checks that any ping round-trip times to interfaces configured with 
latency and possibly jitter are within the allowable range. This also functions as part of the quality 
control for Objective 4 (Automate the configuration of the "world Internet" on the simulator)  

6. Determines the required experiment duration, guard times, and download sizes 
7. Starts an iperf3 server to prepare for an individual TCP data transfer 
8. Starts packet captures. We always start and stop captures progressively such that each capture at an 

observation point includes the entire capture period of all captures taken at observation points closer 
to the world side. This ensures that we cannot “lose” packets heading to the island as a result of a 
packet passing through a subsequent capture point that is not yet listening.  

9. Starts packet capture on the satellite link when required. This feature is useful when the traffic across 
the satellite is coded. 

10. Flushes the path maximum transmission unit (PMTU) cache on the servers to ensure that any 
fragmentation of IP packets reflects the current link setup. 

11. Starts the “world” servers which provide the bulk data that is transmitted across the link. 
12. Starts the island clients. This gets the bulk traffic across the link flowing. 
13. Sends a ping from the special purpose Pi on the world side to its counterpart on the island side. This 

“whistle” ping appears in all packet captures and helps us synchronise the events in the two traces. 
14. Starts a large iperf3 data transfer from the world to the island side. 
15. Starts a series of ICMP ping packets from the special purpose Super Micro server on the world side to 

a machine on the island. This lets us measure the queue sojourn time at the satellite link input.  
16. Waits for the measurement period to conclude. 
17. Sends a second “whistle” ping from the special purpose Pi to act as an experiment end marker in all 

packet captures. 
18. Shuts down the various components in the correct order. 
19. Converts and retrieves the capture files and iperf3 and ping logs and submits them to other scripts for 

analysis. 
20. Retrieves decoder statistics for coded experiments. 
21. Triggers the routine analysis of the captures. 
22. Writes the results to the log file. 

In these tasks, run-exp.sh is supported by around 40 other scripts, which take care of the individual jobs, such 
as starting or shutting down individual experiment components. These scripts in turn have in most cases 
counterparts on the local machines that carry out these tasks. 

We have further written scripts to: 

• Automatically configure latencies and jitters on the “world” servers, pushed from the command and 
control machine. This goes part-way towards Objective 4 (Automate the configuration of the "world 
Internet" on the simulator)  

• Start up and shut down an open source PEP solution (PEPsal) on either side of the link. 
• Analyse the capture files for total throughput, goodput, TCP payload data loss, quality (presence of 

servers and clients), iperf download times and goodput. 
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• Analyse the capture files for TCP flows and produce flow statistics to assist us in quality control and give 
us an idea of the kind of traffic that develops on the simulated link: Total number of flows, average 
number of concurrent flows (which should increase with and be limited by the number of channels), 
average flow size, average number of packets per flow, average time between packets in a flow.  

• Analyse the ping logs for round-trip-time (RTT) latency. This latency is the sum of satellite link latency in 
both directions, the latency on the world server involved (both known since they are part of our 
configuration), and the queue sojourn time - the observable of interest here since it tells us how full the 
input queue to the satellite link was at the time each ping packet arrived at the queue. 

• Analyse the capture files for throughput and goodput trends over time. 
• Summarise and automatically assess result files for multiple experiment runs. 
• Automatically generate plots of throughput, goodput and ping RTT. 

Uncoded baseline simulations 
These started in September 2016, with the first month or so of output taken to bring the results up to our quality 
control standards. To date, we have run many hundreds of these, for all eight exemplary links and for a range of 
queue capacities and channel numbers. This has allowed us to focus on “sweet spot” regions representing 
workable compromises, i.e., queue capacities and demand levels that 

• allow TCP transfers (as measured by iperf3) to complete within reasonable time frames 
• cause as little queue oscillation as possible 
• achieving good link utilisation 
• do not lead to the formation of significant standing queues     

Initially, we ran only a single experiment for each combination of queue capacity and demand levels, with each 
experiment taking around 20 minutes as discussed. A significant portion of these needed repeating in the first 
few months as a result of some of the aforementioned problems that our quality assurance flagged.  

We then focussed on the sweet spot regions and ran additional baselines with parameters in these regions. For 
some of the best parameters, we ran multiple experiments with identical parameters to obtain more 
representative samples. To an extent, the uncoded baselines are not yet complete as we continue to run / repeat 
additional baseline samples with parameters of interest in order to improve the statistical reliability of our existing 
observations: The random selection of servers and flows from the distribution causes significant spread 
especially for the lower capacity GEO link scenarios. 

Sweet spot regions 
The sweet spot regions allow us to select suitable queue sizes for further experimentation with coded traffic and 
guide us to the load levels at which “the going gets tough”. Here is a (necessarily slightly fuzzy) description of 
our findings to date: 

• For GEO links, there is really no amount of queue capacity that is truly acceptable in terms of queue 
sojourn time as voice communication should not exceed 300 ms one-way latency and the satellite link 
itself takes up 250 ms of this, with many if not most terrestrial onward links consuming the rest. 
Assuming somewhat arbitrarily that an additional 100 ms of queueing delay are “marginally acceptable”, 
we observe that: 

o At 8 Mbps, 100 ms allows us to have queues of up to 100kB capacity. Here, the sweet zone is at 
a load of between 20 and 30 client channels. At 20 channels, utilisation is just over 50% and a 
20 MB download takes around 40 seconds with very few queue overflows and no sign of 
standing queues. At 30 client channels, utilisation is just over 70%. The download time has shot 
up to 100 s, and we see evidence of mild oscillation during the download and some formation of 
standing queues during the download (which is one of the longest, if not the longest flow one 
would expect in such a scenario in a 10 minute time frame). 
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o At 16 Mbps, the same argument allows us queues of up to 200kB. The sweet zone here is in the 
range of 100kB to 150kB with loads around the 50 to 60 channel mark. We chose 120kB for our 
further experiments. 

o At 32 Mbps, queue capacities around 250 kB seem to work best with loads of between 100 and 
150 channels. 

o At 64 Mbps, queue capacities around 600 kB with loads of around 250 kB worked best. 
• For MEO links, we have residual one-way latencies upwards of about 60 ms, meaning that we could, in 

principle, afford up to another 240 ms in queue sojourn time before exceeding the 300 ms maximum 
delay for voice. Note that a single channel represents a higher load here than in the GEO case: Firstly, 
the connection establishment phase at the beginning of each connection puts no load on the link 
because the data does not start flowing until it is complete. In the GEO case, this phase is over four 
times longer than for MEO links, so channels on MEO links spend more of their time actually transferring 
data. The lower round-trip time also means that the TCP congestion windows can grow much faster, so 
the transfers spend less time in TCP “slow-start” mode. Overall, this means that each channel can 
complete many more connections on MEO during the same time period. Alas, our investigations show 
that… 

• 32 Mbps: A 200 kB queue supports 50 client channels with no queue oscillation and virtually no standing 
queues, an 80 MB transfer took around 90 seconds. Larger queue capacities lead to standing queues, 
and smaller capacities to queue oscillation. 

• 64 Mbps: 400 kB queues seem to work best with loads up to around 100 channels. 
• 160 Mbps: Queue capacities around 1 MB can support up to around 180 channels.  
• 320 Mbps: Queue capacities around 2 MB seem to work for up to 300 channels. 

We still need to re-examine the 160 Mbps and 320 Mbps MEO baselines here to verify that simulator constraints 
were not an issue. Because of the large amounts of packet capture data that accrue in these experiments, the 
duration was cut to a point where the iperf3 transfer had to be constrained in volume to be able to complete, and 
may at this stage not be making its way out of slow start mode anymore. We are now able to address this 
question with the additional hardware of the upgraded simulator and will do so in due course.  

Caveat: With only one experiment for most combinations, and significant steps between parameters 
investigated, the above figures should be taken as an indicator of recommended magnitude only as they reflect 
combinations investigated. Capacities deviating up to +/-50% from those stated may work equally well if not 
better in some cases, and some of the given capacities may support slightly higher loads as well. In practice, 
load cannot really be controlled and link queue configuration will generally base itself on an estimate of demand 
anyway.  

Coded baseline simulations 
We started a few coded baseline simulations for a 16 Mbps GEO link in October 2016, using the existing 
network coding software version that had given us such good gains during the island deployments. In doing so, 
we used the same run-exp.sh script that we developed for the uncoded runs, and sandwiched it between two 
dedicated scripts that configures and start the network-coded tunnel on either side of the satellite link. These 
scripts in turn invoke local helper scripts on the encoder and decoder, completing our deliverables for 
Objectives 2 and 3.  

These simulations provided less overall goodput than their uncoded counterparts and downloads also took a bit 
longer, regardless of code configuration. 

Investigation showed that all coded packets were maximal size (1500 bytes IP), even if the packets they were 
coding were much smaller. In our island deployment, we had only coded large downloads, where almost all 
packets were maximal size anyway. Now, we were coding small packets as well as large ones, and since 
network coding generates at least one coded packet for each uncoded one (and then some), coding small 
packets as full size packets led to a significant increase in overall coded traffic volume. This was clearly not 
helping, so we contacted Péter Vingelmann at Steinwurf, who declared it a bug and fixed it within days. 
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This improved results significantly, but still did not represent an improvement over uncoded communication, and 
we needed to figure out what held the coding back.  

Remember that the basic idea behind coding is a trade-off: From a certain load level onwards, uncoded traffic 
causes queue oscillation, which slows down large TCP transfers and leaves us with spare capacity on the link. 
Coding attempts to use some of this spare capacity to add protective overhead that will compensate for the 
packet loss of the oscillation, which in turn will allow large transfers to maintain higher goodput rates. That is, the 
spare capacity before coding must accommodate both the protective overhead and any gains in goodput. The 
less overhead we can get away with, the more spare capacity there will be for gain, and vice versa.  

For example, if we have uncoded throughput of 10 Mbps on a 16 Mbps link, and need to configure 30% 
overhead in order to get higher throughput, then our final throughput (less overhead) will be capped at 16 Mbps / 
130% = 12.3 Mbps. At 50% overhead, any gains would be below 660 kbps.   

This was one part of the insight: We needed to keep unnecessary overhead down. 

The second part was once again that we were now no longer dealing just with coding long transfers with large 
packets, but to a good extent with short transfers, many of whom completed within less that one RTT. Transfers 
of this duration do not really benefit much from coding: The ACKs for their first packets normally arrive back at 
the sender after the last data packet has already left there. Even if a packet or two are lost at first transmission, 
the sender just retransmits them, but their loss does not really have much effect on the sender’s future packet 
transmission rates because there are simply no future packets to transmit as part of the transfer. Coding packets 
from such transfers represents a cost without benefit: Unnecessary overhead.  

The third part of the insight was that short transfers very often meant short packets. Since each coded packet 
carries a fixed size coding header, the relative cost of encoding short packets such as SYNs, ACKs, or FINs is 
still substantial, even if we do not inflate them to full size. Short packets are also less likely to be rejected at the 
tail of a byte queue: When the remaining queue capacity is too small to accommodate another full-size (1500 
byte) packet, there is usually still space for small packets. E.g., our small (84 byte) ping packets that we send 
during our experiments in order to measure queue sojourn time are practically never lost. 

The fourth part of the insight came from the predecessor project in the islands: When coding our long transfers 
on a 16 Mbps link, we coded 30 packets of our long transfer at a time (called a generation) and had to supply up 
to 15 coded “spares” for each such generation in order to compensate for the packet losses the flow sustained 
during queue overflows. That meant that up to 15 packets from some generations were lost in overflow events. 
However, in the islands, the coded transfer had only been one of many packet flows that used the link at the 
time of overflow, and the other flows lost packets as well. Now that we were coding all flows, we needed to 
ensure that we covered these losses as well. That meant either more relative overhead - not a good option as 
we already knew - or larger generation sizes. The latter is something the kernel module cannot do due to 
limitations in the kernel data structures it uses. Note that larger generations also mean that overhead cannot be 
used for error correction until almost all of the generation and some overhead have been received at the 
decoder - this time delay needs to be below that with which TCP itself can retransmit. This also places a limit on 
the largest possible generation size.  

Using loss data from the uncoded baseline experiments, we looked at the sort of generation size and overhead 
that would be required in order to meet both of these constraints and still give better throughput on a 16 Mbps 
link. This yielded generation sizes in the several hundred - well beyond the 60 packets the software can currently 
pack into a generation.  

We discussed these issues with Steinwurf and, with a number of budget savings, were able to commission a 
number of modifications to the software: 

• Addition of an interleaver: Rather than adding successive incoming packets to a single generation, the 
software now adds them to a series of generations in a round-robin fashion. This is a well-known 
technique used in burst error correction, which has been used in consumer electronics since the days of 
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the compact disc (CD). In our case, it helps us to circumvent the first of our constraints on generation 
size, as each of the generations can contain up to 60 original packets. This still does not get us around 
the second constraint, but still allows us to correct significantly larger packet loss bursts than before.  

• A size threshold for packets below which we do not encode. This avoids spending unnecessary and 
inefficient overhead on traffic with a low risk of packet loss.  

• An ability to code slightly larger packets as a single packet without the need to fragment. 
• Modifications to the coding header. 
• An ability to defer overhead by one generation. Overhead packets were sent immediately after the 

coded original packets. If these were transmitted into a queue that had just started overflowing, we lost 
the overhead as well.   

We took delivery of the last of these modifications just before the interim report date and saw modest 
improvements in TCP transfer rates. However, further experiments showed that we were still losing a large 
portion of our overhead packets – the one-generation deferral only represented a relatively small mitigation. 

PEP experiments 
We have also run a number of performance-enhancing proxy baselines for the 120 kB / 16 Mbps case using the 
open source PEP software PEPsal, a fully connection-breaking PEP. This resulted in significantly faster TCP 
transfers over uncoded baseline - even better than our coded baselines. However, overall goodput dropped by 
around 2%. 

We intend to repeat these experiments in due course with a tool other than iperf3: Currently, we send the TCP 
data from an iperf3 client on the world side to an iperf3 server on the island side of the simulator. This is a little 
problematic as the iperf3 rate reporting uses information at the application layer, i.e., the server sends regular 
reports back to the client, where we capture the final report the client receives at the time it completes its 
transmission. However, the client determines this point in time based on its own view of the connection. In the 
case of a connection-breaking PEP, the client considers the job done once it has offloaded all data to the PEP - 
which is a comparatively quick job given the smaller latency to the world--side PEP and the large network 
capacity on this part of the path. Little does the client know that the PEP still has much of the data in cache, 
trying to squeeze it through the satellite bottleneck! 

Investigation of codes other than network codes 
This is part of Objective 5 (Prepare for automated experiment runs in different coded configurations and 
combinations), which resulted from a visit in January 2016 by Martin Bossert from the University of Ulm, who 
suggested the use of Partial Unit Memory (PUM) codes as an alternative. I paid him two extended counter-visits 
during my research and study leave, in October and December 2016, respectively. He introduced me to his very 
capable PhD student Sven Puchinger, who simulated the performance of various coding schemes, including a 
number of PUM codes, based on loss data from the uncoded baseline experiments discussed above. This also 
resulted in a novel tweak to PUM codes. Our results (entirely theoretical at this point) give the new PUM codes a 
leg up. A paper summarising our results [17] was presented by the primary investigator at the IEEE International 
Symposium on Information Theory (ISIT) 2017 in late June.   

Impact up to interim report time 
In our interim report, we were reported that our work had already had a number of beneficial impacts for us. As 
the simulator’s hardware extent grew, we became progressively concerned about its accommodation in a 
student lab without after-hours air-conditioning as well as about its power load on the sockets there.  

We successfully lobbied for a dedicated network lab, with strong support from both Brian Carpenter and Nevil 
Brownlee (who did a lot of the lobbying himself while I was on sabbatical). In January 2017, the simulator moved 
to its new home, now amply supplied with power, and with capacity to grow. Our faculty facilities manager 
applied for minor capital works approval to partition off the area with the simulator racks and fit it with its own 
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dedicated heat pump air conditioner to support and supplement the business hours-only building cooled air 
supply over weekends.  

We still can’t wait to see this happen as Lei often works on weekends where temperatures in the room soar into 
the high 20s. Unfortunately, this enhancement has only recently been progressed to a proper planning stage, as 
the discovery of asbestos during the renovation of another building caused workload issues at committee level 
and staffing shortages at faculty level. 

In a separate development, our Head of Department, Prof. Robert Amor, negotiated a significant increase in 
departmental CAPEX, and we were able to enhance the simulator hardware considerably beyond what was 
envisaged when we applied for the grant we are reporting on here. We have already described the hardware 
impact of this in our Platform section at the beginning of this narrative and will describe the flow-on effects on our 
experiments in the next section below. 

The simulator is also proving to be attractive to students. We now have Fuli, a talented Samoan MSc student 
working on a PEP that does not fully break connection, and I am still in discussions with a number of potential 
PhD students. Sadly, money is proving an obstacle for many applicants – full scholarships are worth around 
NZ$35,000 annually, very hard to get, and even those lucky enough to get them often still need savings, family 
support, or external jobs in order to survive in Auckland. Courtesy of a residual balance in one of Brian 
Carpenter’s research accounts, we now have small amounts of up to $5000 p.a. available, however this is still 
only a small drop into a very big bucket.       

Simulator upgrade 
As a result of the aforementioned CAPEX injection, we acquired additional hardware in June/July 2017. In 
addition to the machines mentioned at the beginning of this narrative, we also acquired an extra rack to 
accommodate them, as well as a number of switches and a large number of cables. Most of the equipment was 
ably configured and integrated into the simulator by Lei and a very capable secondary school intern volunteer, 
Liam Scott-Russell, who sacrificed a good part of his July school holidays for this unpaid activity. 

Following the hardware upgrade, we also needed to reconfigure the simulator network itself: The separation of 
PEP and coding onto dedicated machines required two further networks along the satellite chain that connect 
the PEPs and coding machines on either side of the simulated satellite link. We also needed to integrate the 
interfaces on the newly inserted copper taps: Each of these interfaces has a nominal IP address, even though it 
only listens to traffic passing through the tap. 

We then set upon upgrading our experiment scripts. This became necessary for several reasons: Firstly, the 
extra hardware meant that some functions had moved to different machines, e.g., the captures, the ping series 
that let us measure queue sojourn time, and the large iperf transfer all moved to the new dedicated special 
purpose server.  

Secondly, the scripts used in our initial setup did not incorporate a lot of error handling, meaning that batch 
experiments with faulty setups could continue to run for considerable amounts of time until the problem was 
picked up during quality control.  

Now, almost all scripts return an exit code indicating whether they succeeded, many already test whether the 
system they are about to run on is in the right state (e.g., there isn’t already a stale process from a previous 
interrupted experiment running), and most functionalities now use both a dedicated script on the command and 
control machine, which interacts with local helper scripts on the target machines. This allows us to keep the code 
in the main experiment script more compact and less cluttered with detail.  

In total, we created or modified 59 new shell scripts for the command and control machine as part of the 
upgrade, eight scripts on each world server, another five on the special purpose Super Micro, as well as a 
couple on the special purpose Pis, and three scripts on each capture machine that allows us to start, stop, and 
interrupt captures there. We also modified a further 3 scripts used in experiment analysis. Among others, we 
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now compute iperf goodput directly based on the trace files as well, which gives us accurate results even for 
PEPs. 

One issue that raised its head early in the upgrade was that the distribution of the functionalities across more 
machines meant that we usually had to have a larger number of terminal windows open to monitor and control 
what was happening on the important machines. Typically, this includes 2-3 terminals for the command and 
control machine (one to edit run-exp.sh or a supporting script, one to issue commands, and one to look up 
data), a window for each of the five machines on the satellite chain, one for each of the two capture machines, 
one on a world server, one on the special purpose server, one of the special purpose Pi on the world side, and 
one on a machine on the island side. Switching between these windows became increasingly cumbersome with 
the existing screen real estate both on the command and control machine as well as on the primary 
investigator’s laptop. We therefore used leftover funds (with ISIF secretariat permission) to install additional 
screens, which has made working with the simulator a lot easier.    

Terrestrial latencies  
Last but not least, we also needed to revisit the question of terrestrial latencies. These are the delays that 
packets encounter between the end host and the satellite gateway. On most island ends, these are negligible 
owing to the small geographical size of most islands. However, on the world side, these can be quite 
considerable. In our original simulator setup, we had simply taken an educated guess as to what a terrestrial 
latency distribution might look like and had added corresponding netem ingress and egress latencies to our 
servers. After the upgrade, the new servers needed to be configured with appropriate latencies as well, and we 
took this as an opportunity to move away from pure guess work. 

In order to find a realistic distribution, we pinged the off-island IP addresses seen in the Rarotonga TCP flow 
captures and collected their RTTs from Auckland. We then sorted this distribution, partitioned it by the number of 
world servers available to us (22 for regular experiments) and configured each server with the median RTT from 
the respective partition. Over the summer period, we have an intern lined up to transfer this technique to multiple 
satellite sites and to look into the possibility of implementing the delay on the OpenFlow switch that the servers 
connect to, rather than on the servers themselves.      

UDP in traffic 
Our experiments to date have used purely TCP in the bulk traffic. However, our Objective 1 (Develop a tool that 
allows for realistic simulation of UDP flows) was to acquire the capability to run experiments in which a certain 
part of the bandwidth is taken up by UDP traffic which does not respond to packet loss. We are pleased to report 
that we now have developed such a tool, called udpsender. The tool is a C program that takes a text file with a 
flow size distribution as input, as well as a target byte rate. It then randomly selects as many UDP flows and 
transmits them as are required to reach the given target rate. The tool operates out of the special purpose Super 
Micro on the world side of the simulator.  

MEO vs. GEO 
The question as to which type of system is superior is often asked of us. Our baseline simulations to date on the 
upgraded simulator with the recommended queue capacities above show that 32 Mbps MEO links yield about 
10% more goodput at a modest load of 80 channels than their GEO counterparts, and feature lower loss. They 
also complete almost twice the total number of flows during the experiment period. However, this benefit accrues 
almost exclusively to short flows. Our iperf transfers on the simulated MEO link typically achieved an average 
transfer rate of around 5 Mbps, whereas their GEO counterparts manage an average of 6.3 Mbps.  
Work ongoing/planned 
At this point, we are repeating a set of uncoded baselines in order to ensure that the upgraded simulator 
produces results that are comparable to that of the original version. Early indications are that the results are 
indeed somewhat different and that the new configuration gives us slightly lower overall goodput. This is not 
unexpected as the new empirical terrestrial latencies are on average a little larger than those we have previously 
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configured, which results in longer connection establishment times and overall slightly fewer flows with longer 
slow start phases.   

These uncoded baselines will probably keep us busy until around mid-November. We run ten experiments for 
each configuration in order to get a reasonable sample of flow sizes. Our new scripting and the additional 
processing capacity of the new capture servers and the new, more powerful command & control machine have 
reduced the time for a single experiment from around 20 minutes to around 16 minutes, or just over 2 ½ hours 
for each combination of parameters. For each of our eight base scenarios, we run around a dozen parameter 
combinations just to cover the uncoded baselines. Additional time is spent on quality control and on repeating 
experiments for which there were errors, e.g., because of equipment outages. 

At this point, we are then planning to proceed roughly in the following order: 

1. Run coded MEO experiments, where the overhead timing is less critical. 
2. Attempt to run PEPsal over a network-coded tunnel (we think this may be possible using a single 

machine at either end, but we will not know until we try). 
3. Extend our coded/PEPsal/combined baselines to the remaining GEO and MEO cases (except for 160 

and 320 Mbps MEO, which we would like to tackle once we have more hardware and air-conditioning in 
place) 

4. Introduce UDP into the traffic mix (with the tool created under Objective 1) and compare results for 
different hypothetical sat gate locations. 

5. Return to the 16 Mbps GEO coded case with (hopefully) upgraded coding software (we have applied to 
ISIF again for funding to finance this). 

6. We also anticipate that another round of field trials in the Pacific might be useful after this has been 
completed. 

Somewhere on this list will also be a downtime owing to building work: We hope that the simulator racks will 
soon be surrounded by walls and be given their own dedicated 24/7 air conditioning. This is likely to cause a few 
weeks’ worth of disruption. 

 
Relationships 

Much of the first part of this project coincided with the principal investigator’s research and study leave, which 
gave an opportunity to build and renew ties with the international research community. Highlights included: 
 

• A three-week visit to the Massachusetts Institute of Technology hosted by Muriel Médard, whose work 
inspired our project. This provided opportunity to interact with her graduate students and postdocs, as 
well as a former postdoc working on commercial solutions in the network coding field. A paper we wrote 
on possible topologies for network coding over satellite links was presented at the Ninth International 
Conference on Advances in Satellite and Space Communications (SPACOMM 2017) in Venice in late 
April [18] and won a Best Paper Award there, see: 
https://www.iaria.org/conferences2017/AwardsSPACOMM17.html 

• A three-week visit to Steinwurf ApS in Aalborg, Denmark. This gave us a chance to deepen the 
understanding of our project at their end and build a relationship that will hopefully further extend the 
enormous amount of goodwill that Steinwurf have shown.  

• Two three-week visits at the University of Ulm, Germany, which deepened an existing relationship and 
resulted in the aforementioned ISIT paper on PUM codes. 

• The primary investigator also gave talks on the project at the University of Victoria, BC, Notre Dame 
University, the University of Toronto and at the University of Tokyo. 

We have also been able to raise our profile within our department and faculty, which has resulted in significant 
additional CAPEX support (around NZ$50,000 in new CAPEX).  
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We have also published blog contributions on the APNIC and ISIF blogs and kept stakeholders informed of 
progress via e-mail. Together with the graduation of ‘Etuate Cocker (who worked with me on the previous 
project) in September 2017 as the (to the best of our knowledge) first Tongan with a PhD in Computer Science, 
the project has also raised our visibility in the Pacific Island community. As a result, we now have Fuli, a Samoan 
Master’s student, in our group, and are still hopeful that a potential PhD candidate from Kiribati may be able to 
join us.  

 

Lessons learned 
A lot, both technical and conceptual. At a technical level, there were a large number of challenges to deal with, 
including: 

• When developing the client and server software, we discovered that POSIX-based operating systems 
(i.e., practically all systems in common use today) cannot sustain solid data transfer on more than ~20 
parallel sockets if each these gets renewed and used again for a new connection each time a TCP 
connection finishes. We have traced this to the policy by which socket file descriptors are allocated 
(lowest first) and to the priority with which read/write operations on file descriptors are being performed 
(also starting from lowest first in each time slice). This causes starvation for any additional connections. 
Note that this is not the same as saying that a machine cannot support more than 20 sockets – the 
problem only occurs when all of these sockets are being saturated with data.  

• Making netem delays and token bucket filters work properly with each other to simulate the bandwidth 
constraints and latency of a satellite link is not straightforward. We found the all recipes for this that we 
could find on the Internet would work fine when bandwidth and latency were tested separately, but 
crumbled as soon as we tested latency under load. Solved with the help of intermediate function block 
devices. 

• Network devices / NICs with IP fragmentation and TCP segmentation offload wreak havoc on packet 
streams – even when nothing gets dropped, packets still get split and recombined along the way, and 
capture software doesn’t necessarily refrain from combining successive TCP packets either. Trying to 
ascertain packet loss in this way is an exercise in futility – this is why we now look at payload data loss 
instead. 

• Coding is not merely a matter of selecting the right generation size and the number of coded overhead 
packets to send. The timing of the overhead is also important. The coded packets that are sent before 
the overhead only encapsulate incoming packets (these are called “systematically coded packets”). 
Their rate is in the same order of magnitude as the rate of the satellite link. E.g., for a 16 Mbps link, 
incoming packets will typically arrive at a rate of at most a few Mbps. The extra coded (overhead) 
packets can be generated and sent the moment the last systematically coded packet has left the 
encoder. However, the can leave the encoder at the full rate of the link between encoder and satellite 
gateway – typically 1 Gbps. As the overhead is only really needed at time of queue overflow, overhead 
sent immediately slams right into the queue as it is overflowing and gets dropped as well. Similarly, 
overhead that is sent at full rate can actually make the queue overflow, because it is a lot of data arriving 
in a very short time frame. On the other hand, if we send the overhead too late, TCP may lose patience, 
accept the losses and send a retransmissions – and the whole purpose of coding is to prevent TCP from 
doing just that. 

• Making a nice graphics card work with your monitor isn’t always a driver issue. Sometimes, it’s the 
cable. 

• Combining multiple monitors to form a single screen under Ubuntu requires an X extension called 
Xinerama. This is incompatible with the Composite extension, which could be disabled in earlier versions 
of Ubuntu. Now it’s impossible to log into Ubuntu’s Unity desktop if it is disabled, and when it is enabled, 
the machine will crash. Solution: Use another desktop that doesn’t need Composite, e.g., xfce4 in our 
case. 
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• iperf reports on connection-breaking PEPs are grossly inaccurate. Once an iperf client has dumped its 
data onto its closest PEP, it declares the transfer to be over – even if a big part of the data has not made 
it across the satellite link yet. 

• When deploying PEPsal, the MTU of the interface facing the satellite link must be set to the smallest 
MTU encountered along the satellite chain. The PEP will send packets marked DF (Don’t Fragment) as 
if engaging in Path MTU Discovery, but if the satellite chain MTU is lower than its own MTU, will not 
capture any ICMP 590 Destination unreachable (Fragmentation needed) packets returned 
by a router with lower MTU along the chain. These end up at the original TCP sender, which can’t really 
do anything about it! 
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Indicators 
Indicators Baseline Progress assessment Course of action 

UDP simulation tool developed 
(Objective 1) 

User Datagram Protocol (UDP) 
traffic is a non-negligible part of 
Internet traffic. We know how 
much arrives at the island end 
but because we know that some 
of the traffic is lost during queue 
overflows, we do not know how 
much we need to send in order 
to get a certain receive rate. 

The naïve approach to rate 
control in this context would be 
to have a sender on the “world” 
side that receives feedback from 
the “island” side. Having 
assessed the total amount of 
data loss as a result of queue 
oscillation, we now regard hitting 
a precise rate as being of 
secondary importance. What 
was more important, however, 
was to get a UDP flow size mix 
supplied that was realistic – this 
determines queue behaviour. 
We developed a tool named 
udpsender that uses a 
configurable flow size 
distribution and a given target 
rate in order to deliver UDP from 
the world to the island side. 

The tool has been developed 
and tested, however we have 
not had an opportunity to use it 
alongside the TCP traffic on the 
simulator just yet as the latter 
has just been recommissioned 
after its upgrade. We will start 
using this tool once our current 
TCP-only experiments are 
complete.  

Experiment control scripts 
developed (Objectives 2 and 3). 

A large number of individual 
components of the simulator 
needed to be started and 
stopped manually, log files 
needed to be copied manually, 
and routine analysis and quality 
assurance tasks needed to be 
triggered manually. 

We have developed a central 
experiment control script in 
bash called run-exp.sh which 
runs on the command and 
control machine and takes care 
of the tasks common to all 
experiments. run-exp.sh uses 
a number of other scripts with 
more specialised tasks such as 
server start-up and takedown, 
capture start and stop, 
signalling, ping and iperf 
measurements, client load 
balancing, routine result 
analysis, system testing and 
quality assurance. 

We have also developed scripts 
for link configuration, network 
coding encoder/decoder and 
PEP configuration as well as 
terrestrial latency configuration. 
These are invoked as and when 
needed (i.e., not necessarily for 
every experiment run). Almost 
all scripts now check for and 
return exit codes, allowing 
anomalies to be caught quickly. 

Together with run-exp.sh, we 
invoke these scripts as parts of 
small, experiment batch-specific 
scripts, which typically take only 
a few minutes to write.  

Objectives 2 and 3 have been 
achieved. As with any software, 
the scripts developed are 
subject to regular maintenance 
and extension as we add 
features. 
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Indicators Baseline Progress assessment Course of action 

Capability to simulate realistic 
“world Internet” latency 
distributions between the “world” 
satellite gateway and the “world 
servers” in the simulator 
(Objective 4). 

World gateway and world 
servers are connected directly 
via a dumb switch with negligible 
latency. 

We now have two OpenFlow 
capable switches interfacing with 
the world servers (a single 
switch would have been too 
small for the upgraded 
simulator). We have also 
empirically determined a latency 
distribution for an Auckland-
based satellite gateway. At 
present, we are still simulating 
the delay on the world servers 
themselves, however we are 
planning to transfer this 
functionality to the switch in due 
course.   

Objective 4 has been achieved 
in terms of capability but not in 
the envisaged form yet. 

Ability to run automated 
experiments using coded 
configurations using different 
codes (Objective 5, nice to have)  

At the start of the project, only 
one sort of code was available: 
A systematic random linear 
network code whose generation 
size and overhead amount could 
be configured. As we were 
mostly interested in its ability to 
correct packet erasures, the 
question arose as to whether 
other error-correcting codes 
could work as well or better. We 
also wanted to look at 
constraints imposed by the 
implementation of the existing 
code.   

Progress has been made in two 
respects: Firstly, the existing 
software by Steinwurf has been 
extensively modified such that 
there are now three more 
controllable parameters: an 
interleaver size that gets us 
around the generation size limit, 
a packet size cutoff threshold 
that allows us to skip small 
packets that we cannot code 
efficiently, and a switch that lets 
us defer overhead by a short 
amount of time. However, the 
code here is still a random linear 
network code. We are also 
looking for funding to enable us 
to implement a longer delay here 
and make other changes to the 
coding. 

Secondly, we have used 
uncoded data from the simulator 
to look at the feasibility of using 
another family of codes, the 
Partial Unit Memory (PUM) 
codes. At this point, we have 
found that they hold some 
promise. A paper to this effect 
was presented at IEEE ISIT2017 
in Aachen, Germany, at the end 
of June. 

Objective 5 has been partially 
achieved and we intend to 
perform further research in this 
direction.  
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Project implementation 
 
Project activities Input  Outputs Timeline Status 

Simulator hardware 
assembly 

PhD student, 17 Super Micro 
servers, 10 Intel NUCs, and 
86 Raspberry Pis, two 
inherited 19” 7ft equipment 
racks, small parts and cabling. 

Simulator hardware assembly Pre-project in 
2015 and 2016 

Completed. 

Simulator equipment 
setup 

PhD student, simulator 
hardware assembly 

Machines in the simulator 
configured with operating 
systems and any required open 
source helper applications and 
tools. 

Pre-project in 
2015 and 2016 

Completed. 

Development of 
simulator client and 
server software 

Principal Investigator with 
PhD student, a selection of 
Super Micro servers, Intel 
NUCs, and Raspberry Pis 
from the simulator. 

Simulator client and server 
software capable of providing 
calibrated traffic levels with TCP 
flow sizes following configurable 
distributions. 

1/3/2016 (pre-
project) - 
31/10/2016: 
software 
development, 
testing, 
troubleshooting 

Completed (except for 
follow-up with Linux 
kernel team and 
completion of a draft 
paper on an issue 
discovered) 

Configuration and 
troubleshooting of 
satellite emulation 
(bandwidth constraint, 
latency, input queue 
size)  

Principal Investigator with 
PhD student, full simulator 
hardware 

A script for automated setup of 
the satellite emulation.  

1/3/2016 (pre-
project) - 
30/11/2016: 
configuration 
and (a lot of) 
troubleshooting 
and testing 

Completed. 

Development of a client 
load balancer 

Principal Investigator with 
PhD student, full simulator 
hardware, client software 

A script that distributes the 
requested number of client 
channels across all physical 
clients. 

1/6/2016 (pre-
project) - 
31/10/2016 

Completed. 

Development of core 
experiment script run-
exp.sh 

PhD student with Principal 
Investigator, full simulator 
hardware, client load 
balancer, client and server 
software, analysis and quality 
assurance scripts at a later 
stage. 

A script that automatically runs 
an experiment and starts and 
stops all processes involved on 
the various machines across the 
simulator. 

1/9/2016 (pre-
project) - 
30/12/2016 
 
Various 
versions were 
used 
progressively 
from early 
September.  

Completed. 

Uncoded baseline 
experiments 

PhD student with Principal 
Investigator, full simulator 
hardware, client load 
balancer, client and server 
software, progressive 
versions of run-exp.sh, 
analysis and quality 
assurance scripts at a later 
stage. 

Huge amounts of data, which 
gave us a coarse idea of which 
queue capacities to use on 
which sort of satellite link. 

1/9/2016 (pre-
project) - 
present 
 

Completed, except for a 
reference run with the 
upgraded simulator and 
the new terrestrial 
latency distribution.  
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Project activities Input  Outputs Timeline Status 

Development of a main 
analysis and quality 
control script.  

Principal Investigator with 
PhD student, full simulator 
hardware and software, 
other scripts  

An extensive analysis and quality 
control script. used by run-
exp.sh. This script produces 
information we want to see for 
every run: throughput, goodput, 
loss, download time/rate, flow 
information, quality control 
information (did all clients and 
servers participate for the whole 
experiment and carry their fair 
share of the load?) 

1/10/2016 - 
ongoing 

Various versions of the 
script have been in use 
since last October, but 
we continue to extend 
and improve 
functionality. 

Development of a script 
that sets up configurable 
delays and jitters on the 
world servers.  

Principal Investigator, full 
simulator hardware 

A script that sets up configurable 
delays and jitters on the world 
servers. 

1/11/2016 - 
30/11/2016 

Completed. Transition to 
an OpenFlow version is 
being planned. 

Development of a script 
that checks whether all 
network interfaces in the 
simulator are reachable 
and respond in the right 
time frame. 

Principal Investigator, full 
simulator hardware 

A script that pings all machines 
via the various networks in the 
simulator and checks whether 
their response times are within 
the expected range. Used by 
run-exp.sh. 

1/11/2016 - 
30/11/2016 

Completed. 

Development of scripts 
to assist with the coding 

Principal Investigator with 
PhD student, full simulator 
hardware and software. 

A script running on the encoder 
and decoder machines to 
configure and start the coded 
tunnel, another script to take it 
down, and a script on the main 
command and control machine 
that orchestrates these scripts on 
both encoders and decoders. 

1/11/2016 - 
31/1/2017 

Completed in various 
stages reflecting coding 
software updates from 
Steinwurf. 

Coded baseline 
experiments 

PhD student with principal 
investigator, full simulator 
hardware and software, 
existing results. 

More data, yielding insight into 
which code parameter 
combinations work and which 
ones do not, insights that 
informed changes to the software. 

1/11/2016 - 
ongoing 

Ongoing 

Development of offline 
analysis scripts 

PhD student with principal 
investigator, full simulator 
hardware and software, 
existing results. 

We have developed a variety of 
analysis scripts that allow us to 
look deeper into the data we 
capture, analyse and compute 
additional observables and 
visualise them. These scripts are 
mostly intended to allow offline 
processing of measurement data 
for types of analysis that are time-
consuming and that we do not 
need to perform for every 
measurement. E.g., we can 
compute instantaneous 
throughput or goodput or visualise 
queue sojourn time. 

1/11/2016 - 
ongoing 

Ongoing 
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Project activities Input  Outputs Timeline Status 

Configuration of 
PEPsal and 
development of a 
configuration 
script for the 
simulator 

PhD student with principal 
investigator, full simulator hardware 
and software, existing scripts 
packaged with PEPsal. 

Scripts to configure and run PEPsal at both 
ends of the link, and to take it down after an 
experiment. Scripts for the central command 
and control machine to allow remote 
activation / deactivation of PEPsal.  

February 
2017 

Completed 

PEP baseline 
experiments 

PhD student with principal 
investigator, full simulator hardware 
and software. 

Even more data, yielding insights into the 
comparative performance of PEPs in our 
scenarios. 

16/2/2017 - 
ongoing 

Ongoing 
(queued for 
repeat in new 
simulator 
setup) 

Simulator 
hardware 
upgrade 

PhD student with principal 
investigator and secondary student 
intern. From department CAPEX: a 
19”/7ft rack, 15 additional 
SuperMicro servers, 12 additional 
Raspberry Pis, 2 HP ProCurve 
switches, 4 copper taps, lots of 
cables and small parts. From the 
grant: six additional screens, two 
docking stations for laptops, and an 
additional 2 HP Pro Curve 
switches. 
Also: 1 copper tap inherited from 
another project.   

Upgraded simulator with the capability to 
simulate over 4000 island clients. The 
simulator is now also easier to use thanks to 
additional screen real estate. 

1/7/2017 – 
6/10/2017 

Completed 

Simulator script 
upgrade 

PhD student with principal 
investigator, full simulator hardware 
and base software (OS and 
applications) after upgrade.  

A large number of new and upgraded scripts 
to control the running of experiments and the 
analysis of results, with improved error 
handling. 
Includes upgraded configuration of PEPs 
and coded tunnel endpoints 

1/7/2017 – 
12/10/2017 

Completed to 
the point where 
we can run 
batch 
experiments 
again 

Uncoded 
baselines on 
upgraded 
simulator 

PhD student with principal 
investigator, full simulator hardware 
and software 

Data on throughput, goodput, queue sojourn 
time, data loss, “large TCP transfer” rates, 
number of parallel TCP flows as well as 
satellite chain traces for further investigation. 
Ten such experiments are performed for 
each combination of link type and load level. 
We investigate around 10-12 load levels for 
each link type.  

13/10/2017-
approx. end 
of 10/2017 

Ongoing 

Coded baselines 
on upgraded 
simulator 

PhD student with principal 
investigator, full simulator hardware 
and software 

We intend to run a small number of 
baselines here in order to get a better 
understanding of the timing problems seen 
on the old simulator and how serious they 
are in the context of various link types 
(GEO/MEO/bandwidth). More coded 
baselines will follow once we have a 
software version available that allows us to 
delay coded overhead packets. 

November 
2017 

Scheduled 

 

  



 

Technical report 

 

  

This work has been developed with the support provided by the Information Society Innovation Fund (ISIF Asia) – 2015, licensed under the 
Creative Commons Attribution-ShareAlike 4.0 International. 

 

Communication and dissemination 
From the list of outputs above, please specify what dissemination efforts were made with special attention to those intending to reach target 
groups by gender, age, ethnic and socio-economic profiles to impact marginalized and disadvantaged groups. If your organization has a 
communication strategy for this project, please describe how it is implemented, funded and measured.  

The start of the project coincided with the principal investigator’s research and study leave. I used this opportunity to give talks about the 
project at: 

• 21/7/2016: Simon Fraser University, Burnaby, B.C, Canada 
• 4/8/2016: University of Victoria, B.C., Canada 
• 23/8/2016: Notre Dame University, South Bend, Illinois 
• 31/8/2016: University of Toronto 
• 23/9/2016: Massachusetts Institute of Technology, Cambridge, USA 
• 28/1/2017: University of Tokyo 

I also gave personal introductions to the project to individual researchers at the University of Hawaii at Manoa, at the Cooperative 
Association for Internet Data Analysis (CAIDA at the San Diego Supercomputer Center at UCSD), at the University of Ulm and the University 
of Duisburg-Essen in Germany, and at Steinwurf ApS in Aalborg, Denmark. 

Since, I have presented on the project at ICCNA2017 in Kota Kinabalu, Sabah, and at APNIC44 in Taichung. A further presentation at 
NetHui in Auckland in November is planned. 

We have also had two papers accepted into international conferences already: 

• Speidel, U., Cocker, E’., Médard, M., Vingelmann, P., Heide, J., Topologies for the Provision of Network-Coded Services via 
Shared Satellite Channels, to be presented at the Ninth International Conference on Advances in Satellite and Space 
Communications (SPACOMM 2017), April 23 - 27, 2017 - Venice, Italy. [18] This paper was subsequently announced as the 
winner of one of two best paper awards at the conference (see https://www.iaria.org/conferences2017/AwardsSPACOMM17.html).  

• Speidel, U., Puchinger, S., Bossert, M., Constraints for coded tunnels across long latency bottlenecks with ARQ-based congestion 
control, was presented at the IEEE International Symposium on Information Theory (ISIT2017), June 25-30, 2017, Aachen, 
Germany, and is available on IEEExplore (http://ieeexplore.ieee.org/document/8006532/). [17]    

We also have two journal articles in the pipeline: 

• An extended version of our SPACOMM paper was submitted to an invitation-only edition of the International Journal on Advances 
in Telecommunications (v 10 n 3&4 2017, to appear in December 2017). 

• We also submitted a further article to the IEEE Journal on Selected Areas in Communication in July, for a special issue on satellite 
communication. 

We have also contributed to the ISIF Asia Discover blog [20], with a condensed version appearing on the APNIC technical blog [19]. We also 
use our own blog (http://sde.blogs.auckland.ac.nz/) and keep other key stakeholders personally informed via e-mail. 

Project Management and Sustainability 
As a university research team, we were very fortunate to have much of the financial side of the project handled for us by our Faculty of 
Science accounting staff, Staff Service Centre and the Research Office. This includes oversight on how much we spent and what we spent it 
on - all our project expenditure is subject to approval by our Head of Department, for example. On this side, the issue of sustainability does 
not arise. Having interfaced with APNIC/ISIF before has left a footprint in the institutional knowledge, however, which makes it easier for us 
to make this project work on the financial side (and we have gained the impression that the same applies at the APNIC/ISIF end). 

The support by APNIC/ISIF Asia has raised our internal visibility. The project has over the years grown from a student desk based one to a 
facility that now has its own laboratory with equipment racks and a number of student desks, plus (very important but often overlooked) 
plenty of whiteboard space. At present, the racks and the equipment still share the same airspace (and the same air), but we are looking 
forward to having the equipment racks partitioned off and given their own air-conditioning, hopefully over the summer.  

We have also been able to benefit from significant additional faculty CAPEX (around NZ$50,000) in 2017, which allowed us to upgrade the 
simulator and turn it into a research facility that is sustainable over a longer term. Some of the existing CAPEX equipment in the laboratory is 
also up for renewal in 2018.  

Brian Carpenter, former IETF chair and erstwhile professor in our department, has shown close interest in our activities and to his end has 
made the balance of a research account available for us to pay small top-up scholarships to PhD students over the next ~3 years. We are 
also noticing more interest in postgraduate opportunities at both Masters and PhD level - the simulator proves to be a significant drawcard 
here. 

We have also sought further funding from ISIF to support us in the development of the coding software, which is guided by what the project 
has taught us to date.  
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As such, the project will definitely continue well beyond the end of the grant.  
Project Outcomes and Impact 
Outcomes: At this point, we have achieved all of the four immediate technical objectives and made good 
progress towards the nice-to-have fifth objective. We have run many thousands of experiments on the original 
simulator build and have retained the data for well over two thousand. Each experiment runs a complex 
sequence of processes. With the new version of the simulator, we can now run an experiment in under 16 
minutes in most cases. We would not have been able to do this without the scripts developed under this project. 

We have produced two research papers informed by the project [17][18], as well as contributions to the ISIF 
Discover and APNIC technical blogs, and have given a number of presentations in international venues. 

On the scientific side, the project has already yielded significant insight into the dynamic behaviour of TCP over 
satellite connections, as well as helped us build capability in terms of technology and methodology. Not only 
have we been able to confirm the effects seen in the field with the simulator, we now also have a much better 
understanding of the impact of small TCP flows on the dynamics. We have also learned a lot about the necessity 
to consider overhead timing when coding.  

Impact: The most significant immediate impact to date has been our success in negotiating a dedicated network 
laboratory, and the outlook of being able to grow this with further support from our department. We have also 
been able to recruit a Samoan Masters student, and now have a facility that is clearly proving to be attractive. 
We are looking forward to being able to publish more results as the simulator produces them.  

Our simulator data has already led to several aspects of the coding software to be re-thought and has led to 
several revisions of the software. This includes the need to minimise coding-related overhead (coding and 
encapsulation headers) as well as the timing of the overhead, and the implementation of an interleaver to be 
able to cope with the longer burst loss sequences seen in all-of-island coding. 

We have been able to give recommended queue capacities for a range of uncoded scenarios.  

Overall Assessment 
We consider the project to have achieved its objectives. We are still not quite as far down the track with our 
experiments as we had hoped to be, however this delay was caused mainly by the opportunity to improve our 
facility substantially over the design we envisaged when we were proposed the project to ISIF. 

The objectives that are complete have helped us complete thousands of experiments to date, with more being 
added on a daily basis. The scripting has given us the scalability we needed, but its implementation was more 
complex than we initially thought, largely due to quirks in the other software that the scripts leverage. On the 
positive side, the scripts allow us to run large numbers of experiments unattended. This has somewhat 
compensated us for the fact that individual experiments take a long time to complete, and that multiple 
experiments with the same configuration are needed to gain reliable statistics about its performance.  

At the time of writing, we are producing more results and will publish these as we go. 
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Recommendations and Use of Findings 
At this stage, our recommendations to satellite operators and ISPs (our primary end user group) are: 

• TCP causes queue oscillation on satellite links. As load on links increases, they move from a regime 
without significant packet loss on an underutilised link to a regime with queue oscillation (burst losses 
and underutilisation) to a congested regime (near-continuous losses, no underutilisation) where only 
short TCP transfers succeed. Our results show that TCP queue oscillation adequately explains the 
losses seen at Pacific sites where packet loss is observed along link underutilisation.  

• TCP queue oscillation should always be considered alongside rain fading or other physical performance 
problems as a possible cause of packet loss. Rain fading packet loss correlates with the weather, TCP 
queue oscillation packet loss correlates with peak use hours – so the difference is easy to tell as long as 
one looks at statistics over the shorter term.  

• Input queue capacity matters. Approximate recommended capacities for GEO and MEO byte queues 
are given in the narrative section of this report. These are below the conventional recommendation 
(bandwidth-delay product) but above the more general router buffer sizing recommendation of 
Appenzeller.  

• Queue dimensioning represents a trade-off between TCP queue oscillation risk (queue capacity too 
small, affecting large downloads) and the risk of standing queues (queue capacity too large, affecting the 
timing of short flows). Depending on the intended traffic mix, the recommended values should be 
adjusted upwards or downwards. E.g., a link predominantly used for large downloads should use higher 
queue capacities. 

• In contexts where the queue is a packet queue rather than a byte queue, we recommend at this point 
that the packet capacity be computed by dividing the recommended byte capacity by the average packet 
size observed on the link.  

• Performance-enhancing proxies assist in maintaining large flows (with the obvious drawbacks of a 
connection-breaking setup). 

• Network coding remains a promising alternative, but we will first need to find an appropriate timing 
scheme. 

• Location of the satellite operator’s off-island gateway matters. Our experiments with the upgraded 
simulator show that its slightly larger terrestrial latencies to the hosts that island users communicate with 
causes a significant drop in goodput at comparable load levels. ISPs should monitor where most of their 
traffic originates from and choose their satellite partners carefully to ensure their off-island teleport is 
close to the source of the bulk of the traffic. 

• Our experiments to date show that overall MEO goodput is slightly higher than GEO goodput for the 
same bandwidth and offered load, and that the shorter RTT allows almost twice the number of flows to 
complete in the same experiment time. However, this benefit accrues mostly to short flows – the large 
iperf transfers observed on MEO are actually slower than their GEO counterparts, indicating that the 
MEO links may be somewhat more susceptible to TCP queue oscillation. We note however that this 
drawback may be outweighed by the lower cost of bandwidth in MEO links.  

• When using PEPsal, note that MTUs along the satellite chain between PEPs should be at least as large 
as the smallest MTU on the path between hosts either side of the link. This is required to ensure that 
path MTU discovery works correctly, as the PEPs do not process ICMP 590 Destination 
unreachable (Fragmentation needed) packets correctly. 

We are also in a position to make recommendations to others planning to simulate satellite networks: 

• Real-life Internet traffic contains a mix of TCP flow sizes, with most flows being small while a large part 
of the data transferred is part of large flows. On satellite links, small flows tend to complete before TCP 
flow control has had an opportunity to adjust the congestion window size. These flows thus do not 
respond to developing congestion. The portion of such flows on a link determines how much capacity 
remains for large flows with congestion control, and they may crowd large flows out. In simulations, this 
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needs to be taken into account: Simulations that are exclusively based on multiple parallel large flows 
that all respond to congestion are not realistic in such scenarios. 

• When simulating satellite links with latency and rate constraints, it is important to test these constraints 
both separately and jointly. That is, run an iperf test to confirm capacity while pinging to confirm RTT. 

• Ensure that clients and servers are capable of handling the load - not just in terms of total data rates, but 
also in terms of the number of parallel sockets that can sustain a fair rate. 

• Ensure that your data capture method has sufficient buffer space to capture all packets, and be mindful 
that capture may not happen exactly in correct temporal order and that packets may be “repackaged” by 
routers along the way, as well as by capture tools. 

• Ensure that you also configure realistic terrestrial latencies – the distribution has an impact on results!  

Our findings will of course also be used in the continuation of our own experiments with the simulator. 
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Additional	material	

                    
The simulator during initial construction (left top) and in its present configuration (right top) just before the start of the project. Lei Qian cabled 
it all up and configured most of the machines. Two terminals allow local work with the machines - although most of the time, we interact with 
the simulator remotely from our command and control machine, Ulrich Speidel’s office, or even from home. 

 
Above: Nothing like a tray of freshly configured Raspberry Pis! We have eight of these now, 
accommodating a total of 96 Pis. 

Left: The first version of the simulator taking shape.  
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Top left: Dropping in on Emani and Jopoy in Niue during a private visit before the start of the project - the sort of Internet pioneers at the far 
end of a narrowband satellite link that we are aiming the project at. Top right: The primary investigator (right) taking sage advice from Martin 
Bossert (left), one of the world’s top coding experts, in his natural habitat at the University of Ulm, Germany, in late 2016 during the primary 
investigator’s sabbatical. During the visit, we completed a paper on the potential use of PUM codes that we will present at IEEE ISIT in 
Aachen in June, using data obtained from the simulator as part of this project.  

Left below: The Steinwurf team during the principal investigator’s visit in November 2016 - from left to right: Lars, Jeppe, Janus, Jeppe, 
Morten and Vanja. As Steinwurf’s CEO, Janus has backed us all the way & given heaps of critical feedback and great suggestions. Sadly, 
the lead developer on the Steinwurf software, Péter Vingelmann, is not in the picture - he works permanently off-site from Hungary. 

  
Above right: The simulator in its new home, our new dedicated network lab. The yellow rack on the left is due to be replaced by another 7ft 
rack of the same type as the two simulator racks in the middle. The racks on the far right are deeper and are intended for a different project. 
We now have direct fibre connectivity straight into the lab, with up to 10 Gbps possible. The view onto the beautiful equipment will disappear 
later in the year as we are awaiting partition walls and possibly a false ceiling, as well as dedicated 24/7 air-conditioning. These dedicated 
premises are an early outcome of the project, which will also probably see us upgrade the simulator with additional servers. 
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Top left: The heart of the simulator: The three Super Micro Servers that simulate (from top) world gateway (with encoder/decoder/PEP as 
required), satellite link, and island gateway (encoder/decoder/PEP). Middle: The “ugly” side of the racks gives an idea of just how much 
cabling is required to connect about 140 devices and supply power to them. Right: Our new door sign! 

Below left: The lab has a bit of street appeal, but we are still hiding the boxes. Right: Just what we want to see - experiments that pass their 
automatic checks! This one used a network-coded tunnel on a simulated 16 Mbps GEO link with 120 kB of input queue. 
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The simulator racks in their final configuration. The “world side” takes up the 
rightmost rack and the top of the right middle rack. Below to terminal in the right 
middle rack sit the machines of the satellite chain: world-side PEP, world-side 
encoder/decoder, satellite emulator, island-side encoder-decoder, and island-
side PEP. The blue bits below them are the copper taps that capture the traffic 
heading to the island (currently 5 taps, but only two are visible here). The two 
Super Micros at the bottom are the capture servers – one for the island side of 
the link, and one for the world side. Each captures from up to three copper taps. 
 
 
 
 
 
 
 
 
 
 
The photo we hope will soon be history: The simulator in its current home with 
the command and control seat on the right. We are currently talking to the 
university’s property services to have walls installed that will separate the racks 
from the rest of the room and provide them with dedicated air conditioning. The 
room currently only has business hours cooling, meaning the temperatures can 
get tropical during weekends and after hours. 
 
 
 
 
 
 
 
 
Our new command and control seat is now set up with a large display, which 
lets us keep a large number of windows in view simultaneously – interacting 
with the simulator manually often requires talking to up to 11 machines at the 
same time.  
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Our four new HP ProCurve switches (two of which were procured from the 
grant) are OpenFlow compatible and give us the option of reshaping the 
behaviour of the wold-side network of the simulator.  
 
 
 
 
 
 
 
 
 
 

 
Fuli works on non-connection-breaking PEP software that we 
will hopefully be able to deploy on the simulator next year. He 
uses two Raspberry Pis and a PC to emulate a small network. 
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Left: Our current simulator topology. The cyan “world” 
network connects the Super Micro “world servers” and 
a special purpose Super Micro, which act as the TCP 
senders, to the satellite chain. The world-side special 
purpose Raspberry Pi also injects its “whistle” pings 
into this network to signal the start and end of the 
official data collection in each experiment. 

The thin blue network on the other end of the topology 
is the “island” network that connects the Raspberry Pis 
and Intel NUCs representing the “island client” TCP 
receivers to the satellite chain.  

The satellite chain (thick coloured lines) centres around 
the Super Micro that acts as the satellite emulator 
(SATS-EM). It is flanked on each side by a Super 
Micro each that acts as the network coding encoder 
and decoder (SATS-CODW and SATS-CODI). In 
uncoded experiments, these machines simply act as 
forwarding routers. 

The outer part of the satellite chain consists of the two 
performance-enhancing proxy machines (PEPs), one 
on each side, which connect to the island and world 
networks, respectively. In experiments where we do 
not make use of PEP functionality, these act as simple 
forwarding routers. 

The two capture Super Micros, SATS-CW and SATS-
CI, listen to island-bound traffic via one of the five 
copper taps. 

During an experiment, most control interaction is with 
the machines on the satellite chain. In order to keep 
control traffic and experiment traffic separate, we send 
the former via the black campus network. This also 
allows us to drive the simulator remotely. Selected 
machines on the island side are also accessible in this 
way via Ethernet dongles connected to the campus 
network. 

The command-and-control machine (called “Storage 
Server” as it also holds the disks where the results 
accrue) connects to island, world, and campus 
networks. 


